Modeling of graphene-based NEMS

被引:54
作者
Lebedeva, I. V. [1 ,2 ,4 ]
Knizhnik, A. A. [1 ,2 ,4 ]
Popov, A. M. [3 ]
Lozovik, Yu. E. [3 ]
Potapkin, B. V. [1 ,2 ,4 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Moscow Region, Russia
[2] Natl Res Ctr, Kurchatov Inst, Moscow 123182, Russia
[3] Inst Spect, Troitsk 142190, Moscow Region, Russia
[4] Kintech Lab Ltd, Moscow 123182, Russia
基金
俄罗斯基础研究基金会;
关键词
CARBON NANOTUBE; GRAPHITE; ENERGY; BEARING; WALLS; DIFFRACTION; CONSTANTS; DYNAMICS; DRIVEN; MOTION;
D O I
10.1016/j.physe.2011.07.018
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The possibility of designing nanoelectromechanical systems based on relative motion or vibrations of graphene layers is analyzed. Ab initio and empirical calculations of the potential relief of the interlayer interaction energy of bilayer graphene are performed. A new potential based on the density functional theory calculations with the dispersion correction is developed to reliably reproduce the potential relief of the interlayer interaction energy of bilayer graphene. Telescopic oscillations and small relative vibrations of graphene layers are investigated using molecular dynamics simulations. It is shown that these vibrations are characterized with small Q-factor values. The perspectives of nanoelectromechanical systems based on relative motion or vibrations of graphene layers are discussed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:949 / 954
页数:6
相关论文
共 52 条
[1]   Role and Effective Treatment of Dispersive Forces in Materials: Polyethylene and Graphite Crystals as Test Cases [J].
Barone, Vincenzo ;
Casarin, Maurizio ;
Forrer, Daniel ;
Pavone, Michele ;
Sambi, Mauro ;
Vittadini, Andrea .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (06) :934-939
[2]   Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes [J].
Barreiro, Amelia ;
Rurali, Riccardo ;
Hernandez, Eduardo R. ;
Moser, Joel ;
Pichler, Thomas ;
Forro, Laszlo ;
Bachtold, Adrian .
SCIENCE, 2008, 320 (5877) :775-778
[3]   Double-wall nanotubes: classification and barriers to walls relative rotation, sliding and screwlike motion [J].
Belikov, AV ;
Lozovik, YE ;
Nikolaev, AG ;
Popov, AM .
CHEMICAL PHYSICS LETTERS, 2004, 385 (1-2) :72-78
[4]   Microscopic determination of the interlayer binding energy in graphite [J].
Benedict, LX ;
Chopra, NG ;
Cohen, ML ;
Zettl, A ;
Louie, SG ;
Crespi, VH .
CHEMICAL PHYSICS LETTERS, 1998, 286 (5-6) :490-496
[5]   Interwall interaction and elastic properties of carbon nanotubes [J].
Bichoutskaia, E ;
Heggie, MI ;
Popov, AM ;
Lozovik, YE .
PHYSICAL REVIEW B, 2006, 73 (04)
[6]   Nanoresonator Based on Relative Vibrations of the Walls of Carbon Nanotubes [J].
Bichoutskaia, E. ;
Popov, A. M. ;
Lozovik, Y. E. ;
Ershova, O. V. ;
Lebedeva, I. V. ;
Knizhnik, A. A. .
FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2010, 18 (4-6) :523-530
[7]   Nanotube-based data storage devices [J].
Bichoutskaia, Elena ;
Popov, Andrei M. ;
Lozovik, Yurij E. .
MATERIALS TODAY, 2008, 11 (06) :38-43
[8]   Modeling of an ultrahigh-frequency resonator based on the relative vibrations of carbon nanotubes [J].
Bichoutskaia, Elena ;
Popov, Andrei M. ;
Lozovik, Yurij E. ;
Ershova, Olga V. ;
Lebedeva, Irina V. ;
Knizhnik, Andrei A. .
PHYSICAL REVIEW B, 2009, 80 (16)
[9]   Carbon nanotube based bearing for rotational motions [J].
Bourlon, B ;
Glattli, DC ;
Miko, C ;
Forró, L ;
Bachtold, A .
NANO LETTERS, 2004, 4 (04) :709-712
[10]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802