Fracton Hydrodynamics without Time-Reversal Symmetry

被引:24
作者
Guo, Jinkang [1 ]
Glorioso, Paolo [2 ]
Lucas, Andrew [1 ]
机构
[1] Univ Colorado, Ctr Theory Quantum Matter, Dept Phys, Boulder, CO 80309 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
DYNAMICS;
D O I
10.1103/PhysRevLett.129.150603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an effective field theory for the nonlinear fluctuating hydrodynamics of a single conserved charge with or without time-reversal symmetry, based on the Martin-Siggia-Rose formalism. Applying this formalism to fluids with only charge and multipole conservation, and with broken time-reversal symmetry, we predict infinitely many new dynamical universality classes, including some with arbitrarily large upper critical dimensions. Using large scale simulations of classical Markov chains, we find numerical evidence for a breakdown of hydrodynamics in quadrupole-conserving models with broken time-reversal symmetry in one spatial dimension. Our framework can be applied to the hydrodynamics around stationary states of open systems, broadening the applicability of previously developed ideas and methods to a wide range of systems in driven and active matter.
引用
收藏
页数:6
相关论文
共 45 条
[1]  
[Anonymous], 2009, STOCHASTIC METHODS H
[2]   VISCOSITY OF QUANTUM HALL FLUIDS [J].
AVRON, JE ;
SEILER, R ;
ZOGRAF, PG .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :697-700
[3]   Coupled hydrodynamics in dipole-conserving quantum systems [J].
Burchards, Ansgar G. ;
Feldmeier, Johannes ;
Schuckert, Alexander ;
Knap, Michael .
PHYSICAL REVIEW B, 2022, 105 (20)
[4]  
Crossley M, 2017, J HIGH ENERGY PHYS, DOI 10.1007/JHEP09(2017)095
[5]   Numerical test of hydrodynamic fluctuation theory in the Fermi-Pasta-Ulam chain [J].
Das, Suman G. ;
Dhar, Abhishek ;
Saito, Keiji ;
Mendl, Christian B. ;
Spohn, Herbert .
PHYSICAL REVIEW E, 2014, 90 (01)
[6]   Hydrodynamic modes of homogeneous and isotropic fluids [J].
de Boer, Jan ;
Hartong, Jelle ;
Obers, Niels A. ;
Sybesma, Watse ;
Vandoren, Stefan .
SCIPOST PHYSICS, 2018, 5 (02)
[7]   Breakdown of Diffusion on Chiral Edges [J].
Delacretaz, Luca, V ;
Glorioso, Paolo .
PHYSICAL REVIEW LETTERS, 2020, 124 (23)
[8]   Vortices as fractons [J].
Doshi, Darshil ;
Gromov, Andrey .
COMMUNICATIONS PHYSICS, 2021, 4 (01)
[9]   Emergent fracton dynamics in a nonplanar dimer model [J].
Feldmeier, Johannes ;
Pollmann, Frank ;
Knap, Michael .
PHYSICAL REVIEW B, 2021, 103 (09)
[10]   Anomalous Diffusion in Dipole- and Higher-Moment-Conserving Systems [J].
Feldmeier, Johannes ;
Sala, Pablo ;
De Tomasi, Giuseppe ;
Pollmann, Frank ;
Knap, Michael .
PHYSICAL REVIEW LETTERS, 2020, 125 (24)