On the Kahler-Ricci flow on projective manifolds of general type

被引:162
作者
Tian, G [1 ]
Zhang, Z
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
geometric evolution equations; minimal model program;
D O I
10.1007/s11401-005-0533-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note concerns the global existence and convergence of the solution for Kahler-Ricci flow equation when the canonical class, Kx, is numerically effective and big. We clarify some known results regarding this flow on projective manifolds of general type and also show some new observations and refined results.
引用
收藏
页码:179 / 192
页数:14
相关论文
共 21 条
[1]  
[Anonymous], 1994, P CTR MATH APPL AUST
[2]   A NEW CAPACITY FOR PLURISUBHARMONIC-FUNCTIONS [J].
BEDFORD, E ;
TAYLOR, BA .
ACTA MATHEMATICA, 1982, 149 (1-2) :1-40
[4]  
CASCINI P, KAHLERRICCI FLOW MIN
[5]  
Demailly J.-P., COMPLEX ANAL ALGEBRA
[6]  
Durfee A., 1979, Enseign. Math., V25, P131, DOI 10.5169/seals-50375
[7]  
Feldman M, 2003, J DIFFER GEOM, V65, P169
[8]  
Gilbarg D, GRUNDLEHREN MATH WIS, V224
[9]   A GENERALIZATION OF KODAIRA-RAMANUJAMS VANISHING THEOREM [J].
KAWAMATA, Y .
MATHEMATISCHE ANNALEN, 1982, 261 (01) :43-46
[10]   THE CONE OF CURVES OF ALGEBRAIC-VARIETIES [J].
KAWAMATA, Y .
ANNALS OF MATHEMATICS, 1984, 119 (03) :603-633