Boosting Electrochemical Nitrogen Reduction Performance over Binuclear Mo Atoms on N-Doped Nanoporous Graphene: A Theoretical Investigation

被引:19
作者
Guo, Ruijie [1 ]
Hu, Min [1 ]
Zhang, Weiqing [1 ]
He, Jia [1 ]
机构
[1] Tianjin Univ Technol, Sch Mat Sci & Engn, Inst New Energy Mat & Low Carbon Technol, Tianjin Key Lab Adv Funct Porous Mat, Tianjin 300384, Peoples R China
来源
MOLECULES | 2019年 / 24卷 / 09期
基金
中国国家自然科学基金;
关键词
nitrogen reduction reaction; single atom catalyst; binuclear atom catalyst; first principle calculation; AMMONIA-SYNTHESIS; HYDROGEN EVOLUTION; CO OXIDATION; SINGLE; CATALYSTS; WATER; FIXATION; ELECTROLYSIS; CONVERSION; DINITROGEN;
D O I
10.3390/molecules24091777
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Exploration of efficient catalysts is a priority for the electrochemical nitrogen reduction reaction (NRR) in order to receive a high product yield rate and faradaic efficiency of NH3, under ambient conditions. In the present contribution, the binding free energy of N-2, NNH, and NH2 were used as descriptors to screen the potential NRR electrocatalyst among different single or binuclear transition metal atoms on N-doped nanoporous graphene. Results showed that the binuclear Mo catalyst might exhibit the highest catalytic activity. Further free energy profiles confirmed that binuclear Mo catalysts possess the lowest potential determining step (hydrogenation of NH2* to NH3). The improved activities could be ascribed to a down-shift of the density of states for Mo atoms. This investigation could contribute to the design of a highly active NRR electrocatalyst.
引用
收藏
页数:10
相关论文
共 42 条
[1]   Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region [J].
Alam, M. Zahirul ;
De Leon, Israel ;
Boyd, Robert W. .
SCIENCE, 2016, 352 (6287) :795-797
[2]   Solid-state electrochemical synthesis of ammonia: a review [J].
Amar, Ibrahim A. ;
Lan, Rong ;
Petit, Christophe T. G. ;
Tao, Shanwen .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (09) :1845-1860
[3]   From molecules to solids with the DMol3 approach [J].
Delley, B .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :7756-7764
[4]   How a century of ammonia synthesis changed the world [J].
Erisman, Jan Willem ;
Sutton, Mark A. ;
Galloway, James ;
Klimont, Zbigniew ;
Winiwarter, Wilfried .
NATURE GEOSCIENCE, 2008, 1 (10) :636-639
[5]   Review of electrochemical ammonia production technologies and materials [J].
Giddey, S. ;
Badwal, S. P. S. ;
Kulkarni, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (34) :14576-14594
[6]   Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen [J].
Guo, Xiaoguang ;
Fang, Guangzong ;
Li, Gang ;
Ma, Hao ;
Fan, Hongjun ;
Yu, Liang ;
Ma, Chao ;
Wu, Xing ;
Deng, Dehui ;
Wei, Mingming ;
Tan, Dali ;
Si, Rui ;
Zhang, Shuo ;
Li, Jianqi ;
Sun, Litao ;
Tang, Zichao ;
Pan, Xiulian ;
Bao, Xinhe .
SCIENCE, 2014, 344 (6184) :616-619
[7]   Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation [J].
Han, Lili ;
Liu, Xijun ;
Chen, Jinping ;
Lin, Ruoqian ;
Liu, Haoxuan ;
Lue, Fang ;
Bak, Seongmin ;
Liang, Zhixiu ;
Zhao, Shunzheng ;
Stavitski, Eli ;
Luo, Jun ;
Adzic, Radoslav R. ;
Xin, Huolin L. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (08) :2321-2325
[8]   Biornimetic hydrogen evolution:: MoS2 nanoparticles as catalyst for hydrogen evolution [J].
Hinnemann, B ;
Moses, PG ;
Bonde, J ;
Jorgensen, KP ;
Nielsen, JH ;
Horch, S ;
Chorkendorff, I ;
Norskov, JK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (15) :5308-5309
[9]   Ammonia synthesis from first-principles calculations [J].
Honkala, K ;
Hellman, A ;
Remediakis, IN ;
Logadottir, A ;
Carlsson, A ;
Dahl, S ;
Christensen, CH ;
Norskov, JK .
SCIENCE, 2005, 307 (5709) :555-558
[10]   CP2K: atomistic simulations of condensed matter systems [J].
Hutter, Juerg ;
Iannuzzi, Marcella ;
Schiffmann, Florian ;
VandeVondele, Joost .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2014, 4 (01) :15-25