The similarities and differences of different plane solitons controlled by (3

被引:61
作者
Liu, Xiaoyan [1 ,2 ]
Zhou, Qin [3 ]
Biswas, Anjan [4 ,5 ,6 ,7 ]
Alzahrani, Abdullah Kamis [5 ]
Liu, Wenjun [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, POB 122, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, POB 122, Beijing 100876, Peoples R China
[3] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Peoples R China
[4] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[5] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[6] Natl Res Nucl Univ, Dept Appl Math, Moscow 115409, Russia
[7] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
基金
中国国家自然科学基金;
关键词
Soliton transmission; Horita's method; Soliton solutions; Coupled nonlinear Schrodinger equations; NONLINEAR SCHRODINGER-EQUATION; ANTI-DARK SOLITONS; OPTICAL-FIBERS; PHASE-SHIFT; SYSTEM; TRANSMISSION; DISPERSION;
D O I
10.1016/j.jare.2020.04.003
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a system with controllable parameters for describing the evolution of polarization modes in nonlinear fibers is studied. Using the Horita's method, the coupled nonlinear Schrodinger equations are transformed into the bilinear equations, and the one- and two- bright soliton solutions of system (3) are obtained. Then, the influencing factors on velocity and intensity in the process of soliton transmission are analyzed. The fusion, splitting and deformation of the solitons caused by their interactions are discussed. Finally, a method for adjusting the inconsistencies of sine-wave soliton transmission is given. The conclusions of this paper may be helpful for the related research of wavelength division multiplexing systems. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:167 / 173
页数:7
相关论文
共 38 条
[31]   Stable transmission of solitons in the complex cubic-quintic Ginzburg-Landau equation with nonlinear gain and higher-order effects [J].
Yan, Yuanyuan ;
Liu, Wenjun .
APPLIED MATHEMATICS LETTERS, 2019, 98 :171-176
[32]  
Yang CY, 2019, NONLINEAR DYNAM, V95, P983, DOI 10.1007/s11071-018-4609-z
[33]   Bilinear forms and soliton solutions for a fourth-order variable-coefficient nonlinear Schrodinger equation in an inhomogeneous Heisenberg ferromagnetic spin chain or an alpha helical protein [J].
Yang, Jin-Wei ;
Gao, Yi-Tian ;
Wang, Qi-Min ;
Su, Chuan-Qi ;
Feng, Yu-Jie ;
Fu, Xin .
PHYSICA B-CONDENSED MATTER, 2016, 481 :148-155
[34]   Bose-Einstein solitons in time-dependent linear potential [J].
Yang, Q ;
Zhang, JF .
OPTICS COMMUNICATIONS, 2006, 258 (01) :35-42
[35]   Phase shift, oscillation and collision of the anti-dark solitons for the (3+1)-dimensional coupled nonlinear Schrodinger equation in an optical fiber communication system [J].
Yu, Weitian ;
Liu, Wenjun ;
Triki, Houria ;
Zhou, Qin ;
Biswas, Anjan .
NONLINEAR DYNAMICS, 2019, 97 (02) :1253-1262
[36]   Control of dark and anti-dark solitons in the (2+1)-dimensional coupled nonlinear Schrodinger equations with perturbed dispersion and nonlinearity in a nonlinear optical system [J].
Yu, Weitian ;
Liu, Wenjun ;
Triki, Houria ;
Zhou, Qin ;
Biswas, Anjan ;
Belic, Milivoj R. .
NONLINEAR DYNAMICS, 2019, 97 (01) :471-483
[37]   Interactions of bright solitons for the (2+1)-dimensional coupled nonlinear Schrodinger equations from optical fibres with symbolic computation [J].
Zhang, Hai-Qiang ;
Meng, Xiang-Hua ;
Xu, Tao ;
Li, Li-Li ;
Tian, Bo .
PHYSICA SCRIPTA, 2007, 75 (04) :537-542
[38]   Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrodinger Equation [J].
Zhang, Hai-Qiang ;
Liu, Xiao-Li ;
Wen, Li-Li .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (02) :95-101