The similarities and differences of different plane solitons controlled by (3

被引:61
作者
Liu, Xiaoyan [1 ,2 ]
Zhou, Qin [3 ]
Biswas, Anjan [4 ,5 ,6 ,7 ]
Alzahrani, Abdullah Kamis [5 ]
Liu, Wenjun [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, POB 122, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, POB 122, Beijing 100876, Peoples R China
[3] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Peoples R China
[4] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[5] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[6] Natl Res Nucl Univ, Dept Appl Math, Moscow 115409, Russia
[7] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
基金
中国国家自然科学基金;
关键词
Soliton transmission; Horita's method; Soliton solutions; Coupled nonlinear Schrodinger equations; NONLINEAR SCHRODINGER-EQUATION; ANTI-DARK SOLITONS; OPTICAL-FIBERS; PHASE-SHIFT; SYSTEM; TRANSMISSION; DISPERSION;
D O I
10.1016/j.jare.2020.04.003
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a system with controllable parameters for describing the evolution of polarization modes in nonlinear fibers is studied. Using the Horita's method, the coupled nonlinear Schrodinger equations are transformed into the bilinear equations, and the one- and two- bright soliton solutions of system (3) are obtained. Then, the influencing factors on velocity and intensity in the process of soliton transmission are analyzed. The fusion, splitting and deformation of the solitons caused by their interactions are discussed. Finally, a method for adjusting the inconsistencies of sine-wave soliton transmission is given. The conclusions of this paper may be helpful for the related research of wavelength division multiplexing systems. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:167 / 173
页数:7
相关论文
共 38 条
[1]  
Boyd R.W., 2020, Nonlinear Optics, V3th
[2]   MULTISOLITON INTERACTIONS AND WAVELENGTH-DIVISION MULTIPLEXING [J].
CHAKRAVARTY, S ;
ABLOWITZ, MJ ;
SAUER, JR ;
JENKINS, RB .
OPTICS LETTERS, 1995, 20 (02) :136-138
[3]   Generalized Darboux Transformations, Rogue Waves, and Modulation Instability for the Coherently Coupled Nonlinear Schrodinger Equations in Nonlinear Optics [J].
Chen, Su-Su ;
Tian, Bo ;
Sun, Yan ;
Zhang, Chen-Rong .
ANNALEN DER PHYSIK, 2019, 531 (08)
[4]   Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma [J].
Du, Xia-Xia ;
Tian, Bo ;
Qu, Qi-Xing ;
Yuan, Yu-Qiang ;
Zhao, Xue-Hui .
CHAOS SOLITONS & FRACTALS, 2020, 134
[5]   Dark-bright semi-rational solitons and breathers for a higher-order coupled nonlinear Schrodinger system in an optical fiber [J].
Du, Zhong ;
Tian, Bo ;
Chai, Han-Peng ;
Zhao, Xue-Hui .
APPLIED MATHEMATICS LETTERS, 2020, 102
[6]   Water-wave symbolic computation for the Earth, Enceladus and Titan: The higher-order Boussinesq-Burgers system, auto- and non-auto-Backlund transformations [J].
Gao, Xin-Yi ;
Guo, Yong-Jiang ;
Shan, Wen-Rui .
APPLIED MATHEMATICS LETTERS, 2020, 104
[7]   Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation [J].
Guan, Xue ;
Liu, Wenjun ;
Zhou, Qin ;
Biswas, Anjan .
NONLINEAR DYNAMICS, 2019, 98 (02) :1491-1500
[8]   Some lump solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation [J].
Guan, Xue ;
Liu, Wenjun ;
Zhou, Qin ;
Biswas, Anjan .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 366
[9]   EXACT ENVELOPE-SOLITON SOLUTIONS OF A NONLINEAR WAVE-EQUATION [J].
HIROTA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :805-809
[10]   HIERARCHIES OF COUPLED SOLITON-EQUATIONS .1. [J].
HIROTA, R ;
OHTA, Y .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (03) :798-809