AN IMMERSED BOUNDARY METHOD FOR RIGID BODIES

被引:71
作者
Kallemov, Bakytzhan [1 ]
Bhalla, Amneet Pal Singh [2 ]
Griffith, Boyce E. [2 ,3 ]
Donev, Aleksandar [1 ]
机构
[1] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Biomed Engn, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
immersed boundary method; rigid body; fluid-structure interaction; FLUID-STRUCTURE INTERACTION; REYNOLDS-NUMBER FLOWS; FORCE-COUPLING METHOD; STOKES-FLOW; REGULARIZED STOKESLETS; HYDRODYNAMIC INTERACTIONS; VOLUME CONSERVATION; RANDOM ARRAYS; DYNAMICS; SUSPENSIONS;
D O I
10.2140/camcos.2016.11.79
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop an immersed boundary (IB) method for modeling flows around fixed or moving rigid bodies that is suitable for a broad range of Reynolds numbers, including steady Stokes flow. The spatio-temporal discretization of the fluid equations is based on a standard staggered-grid approach. Fluid-body interaction is handled using Peskin's IB method; however, unlike existing IB approaches to such problems, we do not rely on penalty or fractional-step formulations. Instead, we use an unsplit scheme that ensures the no-slip constraint is enforced exactly in terms of the Lagrangian velocity field evaluated at the IB markers. Fractional-step approaches, by contrast, can impose such constraints only approximately, which can lead to penetration of the flow into the body, and are inconsistent for steady Stokes flow. Imposing no-slip constraints exactly requires the solution of a large linear system that includes the fluid velocity and pressure as well as Lagrange multiplier forces that impose the motion of the body. The principal contribution of this paper is that it develops an efficient preconditioner for this exactly constrained IB formulation which is based on an analytical approximation to the Schur complement. This approach is enabled by the near translational and rotational invariance of Peskin's IB method. We demonstrate that only a few cycles of a geometric multigrid method for the fluid equations are required in each application of the preconditioner, and we demonstrate robust convergence of the overall Krylov solver despite the approximations made in the preconditioner. We empirically observe that to control the condition number of the coupled linear system while also keeping the rigid structure impermeable to fluid, we need to place the immersed boundary markers at a distance of about two grid spacings, which is significantly larger from what has been recommended in the literature for elastic bodies. We demonstrate the advantage of our monolithic solver over split solvers by computing the steady state flow through a two-dimensional nozzle at several Reynolds numbers. We apply the method to a number of benchmark problems at zero and finite Reynolds numbers, and we demonstrate first-order convergence of the method to several analytical solutions and benchmark computations.
引用
收藏
页码:79 / 141
页数:63
相关论文
共 86 条
[1]   Fast Ewald summation for Stokesian particle suspensions [J].
af Klinteberg, Ludvig ;
Tornberg, Anna-Karin .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 76 (10) :669-698
[2]   The method of images for regularized Stokeslets [J].
Ainley, Josephine ;
Durkin, Sandra ;
Embid, Rafael ;
Boindala, Priya ;
Cortez, Ricardo .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (09) :4600-4616
[3]  
Ambikasaran S, 2013, J SCI COMPUT, V57, P477, DOI 10.1007/s10915-013-9714-z
[4]   A fast block low-rank dense solver with applications to finite-element matrices [J].
Aminfar, AmirHossein ;
Ambikasaran, Sivaram ;
Darve, Eric .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 304 :170-188
[5]  
[Anonymous], ARXIV150801835
[6]  
[Anonymous], 1980, Numerical heat transfer and fluid flow
[7]   Collision of multi-particle and general shape objects in a viscous fluid [J].
Ardekani, A. M. ;
Dabiri, S. ;
Rangel, R. H. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (24) :10094-10107
[8]   Stochastic Eulerian Lagrangian methods for fluid-structure interactions with thermal fluctuations [J].
Atzberger, Paul J. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (08) :2821-2837
[9]  
Balay S, 1997, MODERN SOFTWARE TOOLS FOR SCIENTIFIC COMPUTING, P163
[10]   Inertial coupling for point particle fluctuating hydrodynamics [J].
Balboa Usabiaga, F. ;
Pagonabarraga, I. ;
Delgado-Buscalioni, R. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 :701-722