The Multi-Regge limit of NMHV amplitudes in N=4 SYM theory

被引:24
作者
Lipatov, Lev [1 ]
Prygarin, Alexander [2 ]
Schnitzer, Howard J. [3 ]
机构
[1] Petersburg Nucl Phys Inst, Dept Theoret Phys, St Petersburg 188300, Russia
[2] Brown Univ, Dept Phys, Providence, RI 02912 USA
[3] Brandeis Univ, Theoret Phys Grp, Martin Fisher Sch Phys, Waltham, MA 02454 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2013年 / 01期
基金
美国国家科学基金会;
关键词
Supersymmetric gauge theory; Scattering Amplitudes Wilson; 't Hooft and Polyakov loops; QCD; HEXAGON WILSON LOOP; ANALYTIC PROPERTIES; REGGEIZATION; SINGULARITY;
D O I
10.1007/JHEP01(2013)068
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the multi-Regge limit for N=4 SYM NMHV leading color amplitudes in two different formulations: the BFKL formalism for multi-Regge amplitudes in leading logarithm approximation, and super conformal N=4 SYM amplitudes. It is shown that the two approaches agree to two-loops for the 2 -> 4 and 3 -> 3 six-point amplitudes. Predictions are made for the multi-Regge limit of three loop 2 -> 4 and 3 -> 3 NMHV amplitudes, as well as a particular sub-set of two loop 2 -> 2 + n (NMHV)-M-k amplitudes in the multi-Regge limit in the leading logarithm approximation from the BFKL, point of view.
引用
收藏
页数:24
相关论文
共 58 条
[21]   Analyticity for multi-Regge limits of the Bern-Dixon-Smirnov amplitudes [J].
Brower, Richard C. ;
Nastase, Horatiu ;
Schnitzer, Howard J. ;
Tan, Chung-I .
NUCLEAR PHYSICS B, 2009, 822 (1-2) :301-347
[22]   Implications of multi-Regge limits for the Bern-Dixon-Smirnov conjecture [J].
Brower, Richard C. ;
Nastase, Horatiu ;
Schnitzer, Howard J. ;
Tan, Chung-I. .
NUCLEAR PHYSICS B, 2009, 814 (1-2) :293-326
[23]   Generic multiloop methods and application to N=4 super-Yang-Mills [J].
Carrasco, John Joseph M. ;
Johansson, Henrik .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (45)
[24]  
Del Duca V, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP05(2010)084
[25]  
Del Duca V, 2010, J HIGH ENERGY PHYS, DOI 10.1007/JHEP03(2010)099
[26]   EQUIVALENCE OF THE PARKE-TAYLOR AND THE FADIN-KURAEV-LIPATOV AMPLITUDES IN THE HIGH-ENERGY LIMIT [J].
DELDUCA, V .
PHYSICAL REVIEW D, 1995, 52 (03) :1527-1534
[27]   Single-valued harmonic polylogarithms and the multi-Regge limit [J].
Dixon, Lance J. ;
Duhr, Claude ;
Pennington, Jeffrey .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (10)
[28]  
Dixon LJ, 2012, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2012)024
[29]   Bootstrapping the three-loop hexagon [J].
Dixon, Lance J. ;
Drummond, James M. ;
Henn, Johannes M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (11)
[30]   Scattering amplitudes: the most perfect microscopic structures in the universe [J].
Dixon, Lance J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (45)