Study on relativistic Cherenkov source with metallic photonic band-gap structure

被引:0
作者
Gao, Xi [1 ]
Yang, Ziqiang [1 ]
Qi, Limei [1 ]
Lan, Feng [1 ]
Shi, Zongjun [1 ]
Liu, Yu [1 ]
Liang, Zheng [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst High Energy Elect, Chengdu 610054, Peoples R China
来源
2008 IEEE INTERNATIONAL VACUUM ELECTRONICS CONFERENCE | 2008年
关键词
relativistic Cherenkov source; photonic band gap; particle-in-cell simulation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A Ka-band slow-wave structure consists of a two-dimensional metallic photonic band-gap and a slow-wave plate as its periodic unit. The photonic band-gap (PBG) structure, whose front view is shown in Fig. 1, has a defect in the central of the triangular lattices. In metallic band gap, the first band gap begins from the zero frequency, which makes the TM01-like mode always appear in defect, so the appropriate parameters can be designed to suppress all the higher-order TM0n-like (n >= 2) modes [1,2]. The parameters of photonic band-gap and the slow-wave structure are shown in Table I.
引用
收藏
页码:158 / 159
页数:2
相关论文
共 50 条
  • [1] Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures
    高喜
    杨梓强
    亓丽梅
    兰峰
    史宗君
    李大治
    梁正
    Chinese Physics B, 2009, 18 (06) : 2452 - 2458
  • [2] Three-dimensional simulation of a Ka-band relativistic Cherenkov source with metal photonic-band-gap structures
    Gao Xi
    Yang Zi-Qiang
    Qi Li-Mei
    Lan Feng
    Shi Zong-Jun
    Li Da-Zhi
    Liang Zheng
    CHINESE PHYSICS B, 2009, 18 (06) : 2452 - 2458
  • [3] Opals for photonic band-gap applications
    Blanco, Alvaro
    Garcia, P. David
    Golmayo, Dolores
    Juarez, Beatriz H.
    Lopez, Cefe
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2006, 12 (06) : 1143 - 1150
  • [4] Resonance Energy Transfer Rate in the Presence of a Cylindrical Photonic Band-gap Structure
    Nguyen Van Phuoc
    Nguyen Dung Chinh
    Optics and Spectroscopy, 2019, 127 : 974 - 978
  • [5] Resonance Energy Transfer Rate in the Presence of a Cylindrical Photonic Band-gap Structure
    Phuoc, Nguyen Van
    Chinh, Nguyen Dung
    OPTICS AND SPECTROSCOPY, 2019, 127 (06) : 974 - 978
  • [6] FABRICATION OF 2-DIMENSIONAL PHOTONIC BAND-STRUCTURE WITH NEAR-INFRARED BAND-GAP
    INOUE, K
    WADA, M
    SAKODA, K
    YAMANAKA, A
    HAYASHI, M
    HAUS, JW
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1994, 33 (10B): : L1463 - L1465
  • [7] Broadening of band-gap in photonic crystals with optically saturated media
    Abrarov, S. M.
    Abrarov, R. M.
    OPTICS COMMUNICATIONS, 2008, 281 (11) : 3131 - 3136
  • [8] Thiel influence of photonic crystal (PhC) parameters on the photonic band-gap (PBG)
    Dyogtyev, AV
    LFNM 2005: 7TH INTERNATIONAL CONFERENCE ON LASER AND FIBER-OPTICAL NETWORKS MODELING, 2005, : 42 - 45
  • [9] Study of tunable band-gap properties in one-dimensional binary photonic crystals
    Peng, Fang-Cao
    Jiang, Ming-Yu
    Wu, Jian-Wei
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2017, 11 (1-2): : 12 - 16
  • [10] Photonic band-gap maps for different two dimensionally periodic photonic crystal structures
    Dyogtyev, A. V.
    Sukhoivanov, I. A.
    De La Rue, R. M.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (01)