Good filtrations and strong F-regularity of the ring of UP-invariants

被引:3
作者
Hashimoto, Mitsuyasu [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
Good filtration; F-regular; Invariant subring; RATIONAL-SINGULARITIES;
D O I
10.1016/j.jalgebra.2012.07.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an algebraically closed field of positive characteristic, G a reductive group over k. and V a finite dimensional G-module. Let P be a parabolic subgroup of G, and U-P its unipotent radical. We prove that if S = Sym V has a good filtration, then S-UP is strongly F-regular. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:198 / 220
页数:23
相关论文
共 48 条
[1]   SCHUR FUNCTORS AND SCHUR COMPLEXES [J].
AKIN, K ;
BUCHSBAUM, DA ;
WEYMAN, J .
ADVANCES IN MATHEMATICS, 1982, 44 (03) :207-278
[2]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[3]   RATIONAL-SINGULARITIES AND QUOTIENTS BY REDUCTIVE GROUPS [J].
BOUTOT, JF .
INVENTIONES MATHEMATICAE, 1987, 88 (01) :65-68
[4]  
Bruns W., 1998, COHEN MACAULAY RINGS
[5]  
Coto S, 2005, CONTEMP MATH, V390, P97
[6]  
Cox D. A., 1995, J ALGEBRAIC GEOM, V4, P17
[7]   CHARACTERISTIC FREE APPROACH TO INVARIANT THEORY [J].
DECONCINI, C ;
PROCESI, C .
ADVANCES IN MATHEMATICS, 1976, 21 (03) :330-354
[8]  
Dolgachev I., 2003, Lectures on Invariant Theory
[9]   INVARIANTS OF UNIPOTENT RADICALS [J].
DONKIN, S .
MATHEMATISCHE ZEITSCHRIFT, 1988, 198 (01) :117-125
[10]  
DONKIN S, 1994, NATO ADV SCI INST SE, V424, P59