Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type

被引:65
作者
Luis Vazquez, Juan [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
Nonlinear fractional diffusion; fundamental solutions; very singular solutions; asymptotic behaviour; FAST DIFFUSION EQUATION; SINGULAR SOLUTIONS; CLASSIFICATION;
D O I
10.4171/JEMS/446
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence, uniqueness and main properties of the fundamental solutions for the fractional porous medium equation introduced in [51]. They are self-similar functions of the form u(x, t) = t(-alpha) f (vertical bar x vertical bar t(-beta)) with suitable alpha and beta. As a main application of this construction, we prove that the asymptotic behaviour of general solutions is represented by such special solutions. Very singular solutions are also constructed. Among other interesting qualitative properties of the equation we prove an Aleksandrov reflection principle.
引用
收藏
页码:769 / 803
页数:35
相关论文
共 68 条
[1]   Anomalous diffusion in view of Einstein's 1905 theory of Brownian motion [J].
Abe, S ;
Thurner, S .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (2-4) :403-407
[2]   Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime [J].
Agueh, Martial ;
Blanchet, Adrien ;
Carrillo, Jose A. .
JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (01) :59-84
[3]  
Aleksandrov A. D., 1960, Soviet Math. Dokl., V1, P1151
[4]  
[Anonymous], 1988, Rev. Mat. Iberoam, DOI DOI 10.4171/RMI/77
[5]  
[Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[6]   CALCULATION OF ANOMALOUS EXPONENTS IN NONLINEAR DIFFUSION [J].
ARONSON, DG ;
VAZQUEZ, JL .
PHYSICAL REVIEW LETTERS, 1994, 72 (03) :348-351
[7]   Continuity of the temperature in boundary heat control problems [J].
Athanasopoulos, I. ;
Caffarelli, L. A. .
ADVANCES IN MATHEMATICS, 2010, 224 (01) :293-315
[8]   SELF-SIMILAR SOLUTIONS OF SECOND KIND IN NONLINEAR FILTRATION [J].
BARENBLA.GI ;
SIVASHIN.GI .
JOURNAL OF APPLIED MATHEMATICS AND MECHANICS-USSR, 1969, 33 (05) :836-&
[9]  
Barenblatt G. I., 1996, SCALING SELF SIMILAR
[10]  
Barenblatt G. I., 2003, SCALING CAMBRIDGE TE