Numerical Strategies for Solving Multiparameter Spectral Problems

被引:3
作者
Amodio, Pierluigi [1 ]
Settanni, Giuseppina [1 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Matemat, Bari, Italy
来源
NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT II | 2020年 / 11974卷
关键词
Multiparameter spectral problems; High order methods; Finite difference schemes;
D O I
10.1007/978-3-030-40616-5_23
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We focus on the solution of multiparameter spectral problems, and in particular on some strategies to compute coarse approximations of selected eigenparameters depending on the number of oscillations of the associated eigenfunctions. Since the computation of the eigenparameters is crucial in codes for multiparameter problems based on finite differences, we herein present two strategies. The first one is an iterative algorithm computing solutions as limit of a set of decoupled problems (much easier to solve). The second one solves problems depending on a parameter sigma is an element of [0, 1], that give back the original problem only when sigma = 1. We compare the strategies by using well known test problems with two and three parameters.
引用
收藏
页码:298 / 305
页数:8
相关论文
共 46 条
[21]   Numerical methods on Shishkin meshes for linear convection-diffusion problems [J].
Linss, T ;
Stynes, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (28) :3527-3542
[22]   High order infeasible-interior-point methods for solving sufficient linear complementarity problems [J].
Stoer, J ;
Wechs, M ;
Mizuno, S .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (04) :832-862
[23]   AMFR-W NUMERICAL METHODS FOR SOLVING HIGH-DIMENSIONAL SABR/LIBOR PDE MODELS [J].
Lopez-Salas, J. G. ;
Perez-Rodriguez, S. ;
Vazquez, C. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (01) :B30-B54
[24]   High order generalized upwind schemes and numerical solution of singular perturbation problems [J].
P. Amodio ;
I. Sgura .
BIT Numerical Mathematics, 2007, 47 :241-257
[25]   High order generalized upwind schemes and numerical solution of singular perturbation problems [J].
Amodio, P. ;
Sgura, I. .
BIT NUMERICAL MATHEMATICS, 2007, 47 (02) :241-257
[26]   ON CONVERGENCE OF NUMERICAL SCHEMES WHEN CALCULATING RIEMANN PROBLEMS FOR SHALLOW WATER EQUATIONS [J].
Kovyrkina, O. A. ;
Ostapenko, V. V. ;
Polunina, E. I. .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2024, 21 (02) :B171-B202
[27]   A Zika Virus Model Incorporating the Role of Information: Stability, Numerical Methods, and Control Strategies [J].
Sarkar, Tapan ;
Das, Saduri ;
Choudhury, Sanuwar Ahmed ;
Biswas, Pankaj .
MODELING EARTH SYSTEMS AND ENVIRONMENT, 2025, 11 (02)
[28]   A study on the numerical dissipation of the Spectral Difference method for freely decaying and wall-bounded turbulence [J].
Chapelier, J. -B. ;
Lodato, G. ;
Jameson, A. .
COMPUTERS & FLUIDS, 2016, 139 :261-280
[29]   A high-order numerical algorithm for solving Lane-Emden equations with various types of boundary conditions [J].
Alam, Mohammad Prawesh ;
Begum, Tahera ;
Khan, Arshad .
COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (06)
[30]   Six numerical schemes for parabolic initial boundary value problems with a priori bounded solution [J].
Makhanov, SS ;
Semenov, AY .
APPLIED NUMERICAL MATHEMATICS, 2003, 46 (3-4) :353-377