Meta-analysis of Gene-Level Associations for Rare Variants Based on Single-Variant Statistics

被引:54
作者
Hu, Yi-Juan [1 ]
Berndt, Sonja I. [2 ]
Gustafsson, Stefan [3 ]
Ganna, Andrea [3 ,4 ]
Hirschhorn, Joel [5 ,6 ,7 ,8 ]
North, Kari E. [9 ,10 ]
Ingelsson, Erik [3 ,11 ]
Lin, Dan-Yu [12 ]
机构
[1] Emory Univ, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
[2] Natl Canc Inst, Natl Inst Hlth, Div Canc Epidemiol & Genet, Bethesda, MD 20892 USA
[3] Univ Uppsala Hosp, Dept Med Sci, Mol Epidemiol & Sci Life Lab, S-75185 Uppsala, Sweden
[4] Karolinska Inst, Dept Med Epidemiol & Biostat, S-17177 Stockholm, Sweden
[5] Childrens Hosp, Div Genet & Endocrinol, Boston, MA 02115 USA
[6] Childrens Hosp, Ctr Basic & Translat Obes Res, Boston, MA 02115 USA
[7] Broad Inst, Metab Initiat & Program Med & Populat Genet, Cambridge, MA 02142 USA
[8] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
[9] Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27599 USA
[10] Univ N Carolina, Carolina Ctr Genome Sci, Chapel Hill, NC 27599 USA
[11] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford OX3 7BN, England
[12] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
EFFICIENCY; LOCI;
D O I
10.1016/j.ajhg.2013.06.011
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associated with complex human diseases. There is a growing recognition that identifying "causal" rare variants also requires large-scale meta-analysis. The fact that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis (i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight that multivariate statistics can be recoVered from single-variant statistics, together with the correlation matrix of the single-variant test statistics, which can be estimated from one of the participating studies or from a publicly available database. We show both theoretically and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint analysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits (GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available.
引用
收藏
页码:236 / 248
页数:13
相关论文
共 24 条
[1]   Hundreds of variants clustered in genomic loci and biological pathways affect human height [J].
Allen, Hana Lango ;
Estrada, Karol ;
Lettre, Guillaume ;
Berndt, Sonja I. ;
Weedon, Michael N. ;
Rivadeneira, Fernando ;
Willer, Cristen J. ;
Jackson, Anne U. ;
Vedantam, Sailaja ;
Raychaudhuri, Soumya ;
Ferreira, Teresa ;
Wood, Andrew R. ;
Weyant, Robert J. ;
Segre, Ayellet V. ;
Speliotes, Elizabeth K. ;
Wheeler, Eleanor ;
Soranzo, Nicole ;
Park, Ju-Hyun ;
Yang, Jian ;
Gudbjartsson, Daniel ;
Heard-Costa, Nancy L. ;
Randall, Joshua C. ;
Qi, Lu ;
Smith, Albert Vernon ;
Maegi, Reedik ;
Pastinen, Tomi ;
Liang, Liming ;
Heid, Iris M. ;
Luan, Jian'an ;
Thorleifsson, Gudmar ;
Winkler, Thomas W. ;
Goddard, Michael E. ;
Lo, Ken Sin ;
Palmer, Cameron ;
Workalemahu, Tsegaselassie ;
Aulchenko, Yurii S. ;
Johansson, Asa ;
Zillikens, M. Carola ;
Feitosa, Mary F. ;
Esko, Tonu ;
Johnson, Toby ;
Ketkar, Shamika ;
Kraft, Peter ;
Mangino, Massimo ;
Prokopenko, Inga ;
Absher, Devin ;
Albrecht, Eva ;
Ernst, Florian ;
Glazer, Nicole L. ;
Hayward, Caroline .
NATURE, 2010, 467 (7317) :832-838
[2]   An integrated map of genetic variation from 1,092 human genomes [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Schmidt, Jeanette P. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Dinh, Huyen ;
Kovar, Christie ;
Lee, Sandra ;
Lewis, Lora ;
Muzny, Donna ;
Reid, Jeff ;
Wang, Min ;
Wang, Jun ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Li, Zhuo ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Su, Zhe ;
Tai, Shuaishuai ;
Tang, Meifang .
NATURE, 2012, 491 (7422) :56-65
[3]   Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture [J].
Berndt, Sonja I. ;
Gustafsson, Stefan ;
Maegi, Reedik ;
Ganna, Andrea ;
Wheeler, Eleanor ;
Feitosa, Mary F. ;
Justice, Anne E. ;
Monda, Keri L. ;
Croteau-Chonka, Damien C. ;
Day, Felix R. ;
Esko, Tonu ;
Fall, Tove ;
Ferreira, Teresa ;
Gentilini, Davide ;
Jackson, Anne U. ;
Luan, Jian'an ;
Randall, Joshua C. ;
Vedantam, Sailaja ;
Willer, Cristen J. ;
Winkler, Thomas W. ;
Wood, Andrew R. ;
Workalemahu, Tsegaselassie ;
Hu, Yi-Juan ;
Lee, Sang Hong ;
Liang, Liming ;
Lin, Dan-Yu ;
Min, Josine L. ;
Neale, Benjamin M. ;
Thorleifsson, Gudmar ;
Yang, Jian ;
Albrecht, Eva ;
Amin, Najaf ;
Bragg-Gresham, Jennifer L. ;
Cadby, Gemma ;
den Heijer, Martin ;
Eklund, Niina ;
Fischer, Krista ;
Goel, Anuj ;
Hottenga, Jouke-Jan ;
Huffman, Jennifer E. ;
Jarick, Ivonne ;
Johansson, Asa ;
Johnson, Toby ;
Kanoni, Stavroula ;
Kleber, Marcus E. ;
Koenig, Inke R. ;
Kristiansson, Kati ;
Kutalik, Zoltn ;
Lamina, Claudia ;
Lecoeur, Cecile .
NATURE GENETICS, 2013, 45 (05) :501-U69
[4]   Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application [J].
Cantor, Rita M. ;
Lange, Kenneth ;
Sinsheimer, Janet S. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2010, 86 (01) :6-22
[5]  
Cox D.R., 1974, THEORETICAL STAT
[6]   Practical aspects of imputation-driven meta-analysis of genome-wide association studies [J].
de Bakker, Paul I. W. ;
Ferreira, Manuel A. R. ;
Jia, Xiaoming ;
Neale, Benjamin M. ;
Raychaudhuri, Soumya ;
Voight, Benjamin F. .
HUMAN MOLECULAR GENETICS, 2008, 17 :R122-R128
[7]   A second generation human haplotype map of over 3.1 million SNPs [J].
Frazer, Kelly A. ;
Ballinger, Dennis G. ;
Cox, David R. ;
Hinds, David A. ;
Stuve, Laura L. ;
Gibbs, Richard A. ;
Belmont, John W. ;
Boudreau, Andrew ;
Hardenbol, Paul ;
Leal, Suzanne M. ;
Pasternak, Shiran ;
Wheeler, David A. ;
Willis, Thomas D. ;
Yu, Fuli ;
Yang, Huanming ;
Zeng, Changqing ;
Gao, Yang ;
Hu, Haoran ;
Hu, Weitao ;
Li, Chaohua ;
Lin, Wei ;
Liu, Siqi ;
Pan, Hao ;
Tang, Xiaoli ;
Wang, Jian ;
Wang, Wei ;
Yu, Jun ;
Zhang, Bo ;
Zhang, Qingrun ;
Zhao, Hongbin ;
Zhao, Hui ;
Zhou, Jun ;
Gabriel, Stacey B. ;
Barry, Rachel ;
Blumenstiel, Brendan ;
Camargo, Amy ;
Defelice, Matthew ;
Faggart, Maura ;
Goyette, Mary ;
Gupta, Supriya ;
Moore, Jamie ;
Nguyen, Huy ;
Onofrio, Robert C. ;
Parkin, Melissa ;
Roy, Jessica ;
Stahl, Erich ;
Winchester, Ellen ;
Ziaugra, Liuda ;
Altshuler, David ;
Shen, Yan .
NATURE, 2007, 449 (7164) :851-U3
[8]   Shifting paradigm of association studies: Value of rare single-nucleotide polymorphisms [J].
Gorlov, Ivan P. ;
Gorlova, Olga Y. ;
Sunyaev, Shamil R. ;
Spitz, Margaret R. ;
Amos, Christopher I. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 82 (01) :100-112
[9]   Methods for detecting associations with rare variants for common diseases: Application to analysis of sequence data [J].
Li, Bingshan ;
Leal, Suzanne M. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 83 (03) :311-321
[10]   GWAsimulator: a rapid whole-genome simulation program [J].
Li, Chun ;
Li, Mingyao .
BIOINFORMATICS, 2008, 24 (01) :140-142