Library preparation methodology can influence genomic and functional predictions in human microbiome research

被引:146
作者
Jones, Marcus B. [1 ,2 ]
Highlander, Sarah K. [2 ]
Anderson, Ericka L. [1 ]
Li, Weizhong [1 ,2 ]
Dayrit, Mark [1 ]
Klitgord, Niels [1 ]
Fabani, Martin M. [1 ]
Seguritan, Victor [1 ]
Green, Jessica [1 ]
Pride, David T. [3 ,4 ]
Yooseph, Shibu [1 ,2 ]
Biggs, William [1 ]
Nelson, Karen E. [1 ,2 ]
Venter, J. Craig [1 ,2 ]
机构
[1] Human Longev Inc, San Diego, CA 92121 USA
[2] J Craig Venter Inst, Genom Med, La Jolla, CA 92037 USA
[3] Univ Calif San Diego, Dept Pathol, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Med, La Jolla, CA 92093 USA
关键词
microbiome; genomics; sequencing; GUT MICROBIOTA; REPRODUCIBILITY; METAGENOMICS; DNA;
D O I
10.1073/pnas.1519288112
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Observations from human microbiome studies are often conflicting or inconclusive. Many factors likely contribute to these issues including small cohort sizes, sample collection, and handling and processing differences. The field of microbiome research is moving from 16S rDNA gene sequencing to a more comprehensive genomic and functional representation through whole-genome sequencing (WGS) of complete communities. Here we performed quantitative and qualitative analyses comparing WGS metagenomic data from human stool specimens using the Illumina Nextera XT and Illumina TruSeq DNA PCR-free kits, and the KAPA Biosystems Hyper Prep PCR and PCR-free systems. Significant differences in taxonomy are observed among the four different next-generation sequencing library preparations using a DNA mock community and a cell control of known concentration. We also revealed biases in error profiles, duplication rates, and loss of reads representing organisms that have a high %G+C content that can significantly impact results. As with all methods, the use of benchmarking controls has revealed critical differences among methods that impact sequencing results and later would impact study interpretation. We recommend that the community adopt PCR-free-based approaches to reduce PCR bias that affects calculations of abundance and to improve assemblies for accurate taxonomic assignment. Furthermore, the inclusion of a known-input cell spike-in control provides accurate quantitation of organisms in clinical samples.
引用
收藏
页码:14024 / 14029
页数:6
相关论文
共 20 条
[1]   An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation) [J].
Aryee, Martin J. ;
Gutierrez-Pabello, Jose A. ;
Kramnik, Igor ;
Maiti, Tapabrata ;
Quackenbush, John .
BMC BIOINFORMATICS, 2009, 10
[2]   The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies [J].
Brooks, J. Paul ;
Edwards, David J. ;
Harwich, Michael D., Jr. ;
Rivera, Maria C. ;
Fettweis, Jennifer M. ;
Serrano, Myrna G. ;
Reris, Robert A. ;
Sheth, Nihar U. ;
Huang, Bernice ;
Girerd, Philippe ;
Strauss, Jerome F., III ;
Jefferson, Kimberly K. ;
Buck, Gregory A. .
BMC MICROBIOLOGY, 2015, 15
[3]   PCR Amplification-Independent Methods for Detection of Microbial Communities by the High-Density Microarray PhyloChip [J].
DeAngelis, Kristen M. ;
Wu, Cindy H. ;
Beller, Harry R. ;
Brodie, Eoin L. ;
Chakraborty, Romy ;
DeSantis, Todd Z. ;
Fortney, Julian L. ;
Hazen, Terry C. ;
Osman, Shariff R. ;
Singer, Mary E. ;
Tom, Lauren M. ;
Andersen, Gary L. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (18) :6313-6322
[4]   Rapid quantification and taxonomic classification of environmental DNA from both prokaryotic and eukaryotic origins using a microarray [J].
DeSantis, TZ ;
Stone, CE ;
Murray, SR ;
Moberg, JP ;
Andersen, GL .
FEMS MICROBIOLOGY LETTERS, 2005, 245 (02) :271-278
[5]  
Eichner CA, 1999, APPL ENVIRON MICROB, V65, P102
[6]   A Taxonomic Signature of Obesity in the Microbiome? Getting to the Guts of the Matter [J].
Finucane, Mariel M. ;
Sharpton, Thomas J. ;
Laurent, Timothy J. ;
Pollard, Katherine S. .
PLOS ONE, 2014, 9 (01)
[7]   Assessment of the human faecal microbiota: II. Reproducibility and associations of 16S rRNA pyrosequences [J].
Flores, Roberto ;
Shi, Jianxin ;
Gail, Mitchell H. ;
Gajer, Pawel ;
Ravel, Jacques ;
Goedert, James J. .
EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2012, 42 (08) :855-863
[8]   Sequencing and beyond: integrating molecular 'omics' for microbial community profiling [J].
Franzosa, Eric A. ;
Hsu, Tiffany ;
Sirota-Madi, Alexandra ;
Shafquat, Afrah ;
Abu-Ali, Galeb ;
Morgan, Xochitl C. ;
Huttenhower, Curtis .
NATURE REVIEWS MICROBIOLOGY, 2015, 13 (06) :360-372
[9]   Relating the metatranscriptome and metagenome of the human gut [J].
Franzosa, Eric A. ;
Morgan, Xochitl C. ;
Segata, Nicola ;
Waldron, Levi ;
Reyes, Joshua ;
Earl, Ashlee M. ;
Giannoukos, Georgia ;
Boylan, Matthew R. ;
Ciulla, Dawn ;
Gevers, Dirk ;
Izard, Jacques ;
Garrett, Wendy S. ;
Chan, Andrew T. ;
Huttenhower, Curtis .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (22) :E2329-E2338
[10]   Metagenomic analysis of the human distal gut microbiome [J].
Gill, Steven R. ;
Pop, Mihai ;
DeBoy, Robert T. ;
Eckburg, Paul B. ;
Turnbaugh, Peter J. ;
Samuel, Buck S. ;
Gordon, Jeffrey I. ;
Relman, David A. ;
Fraser-Liggett, Claire M. ;
Nelson, Karen E. .
SCIENCE, 2006, 312 (5778) :1355-1359