Finite difference approximation of electron balance problem in the stationary high-frequency induction discharges

被引:6
作者
Solov'ev, Sergey I. [1 ]
Solov'ev, Pavel S. [1 ]
Chebakova, Violetta Yu. [1 ]
机构
[1] Kazan Fed Univ, 18 Kremlevskaya St, Kazan 420008, Russia
来源
INTERNATIONAL CONFERENCE ON MODERN TRENDS IN MANUFACTURING TECHNOLOGIES AND EQUIPMENT (ICMTMTE 2017) | 2017年 / 129卷
基金
俄罗斯基础研究基金会;
关键词
EIGENVALUE PROBLEMS; SPECTRAL PROBLEMS; ELEMENT APPROXIMATIONS; NONLINEAR PROBLEM; SUPERCONVERGENCE; PARAMETER;
D O I
10.1051/matecconf/201712906014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The problem of finding the minimal eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem for the ordinary differential equation with coefficients depending on a spectral parameter is investigated. This problem arises in modeling the plasma of radio-frequency discharge at reduced pressures. The original differential eigenvalue problem is approximated by the finite difference method on a uniform grid. A sufficient condition for the existence of a minimal eigenvalue corresponding to a positive eigenfunction of the finite difference nonlinear eigenvalue problem is established. Error estimates for the approximate eigenvalue and the corresponding approximate positive eigenfunction are proved. Investigations of this paper generalize well known results for eigenvalue problems with linear dependence on the spectral parameter.
引用
收藏
页数:4
相关论文
共 30 条
[1]  
Abdullin I. Sh., 2000, Radio-Frequency Plasma-Jet Material Processing at Low Pressures
[2]  
[Anonymous], 2001, Spectral problems associated with corner singularities of solutions to elliptic equations
[3]  
[Anonymous], RES J APPL SCI, DOI 10.3923/rjasci.2015.428.435
[4]   Solving physically nonlinear equilibrium problems for sandwich plates with a transversally soft core [J].
Badriev I.B. ;
Garipova G.Z. ;
Makarov M.V. ;
Paimushin V.N. ;
Khabibullin R.F. .
Lobachevskii Journal of Mathematics, 2015, 36 (4) :474-481
[5]   Solvability of physically and geometrically nonlinear problem of the theory of sandwich plates with transversally-soft core [J].
Badriev I.B. ;
Makarov M.V. ;
Paimushin V.N. .
Russian Mathematics, 2015, 59 (10) :57-60
[6]   Mathematical Simulation of Nonlinear Problem of Three-Point Composite Sample Bending Test [J].
Badriev, I. B. ;
Makarov, M. V. ;
Paimushin, V. N. .
2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING (ICIE-2016), 2016, 150 :1056-1062
[7]   Numerical Investigation of Physically Nonlinear Problem of Sandwich Plate Bending [J].
Badriev, I. B. ;
Makarov, M. V. ;
Paimushin, V. N. .
2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING (ICIE-2016), 2016, 150 :1050-1055
[8]  
Badriev I B, 2015, APPL MATH SCI, V9, P5697, DOI DOI 10.12988/AMS.2015.57480
[9]  
Badriev I.B., 2013, PNRPU MECH B, V3, P37
[10]   NLEVP: A Collection of Nonlinear Eigenvalue Problems [J].
Betcke, Timo ;
Higham, Nicholas J. ;
Mehrmann, Volker ;
Schroeder, Christian ;
Tisseur, Francoise .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2013, 39 (02)