On one blow up point solutions to the critical nonlinear Schrodinger equation

被引:11
作者
Merle, F
机构
[1] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
[2] Univ Paris 11, CNRS, UMR 8628, Math Lab, F-91405 Orsay, France
关键词
D O I
10.1142/S021989160500066X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the L-2 critical nonlinear Schrodinger equation iu(t) = -Delta u - vertical bar u vertical bar 4/Nu in the energy space H-1. In the series of papers [11-15,18], we studied finite time blow up solutions for which lim(t up arrow T<+infinity) vertical bar del u(t)vertical bar(L2) = +infinity and proved classification results of the blow up dynamics for the specific class of small super critical L-2 mass initial data. We extend these results here to a wider class of finite time blow up solutions corresponding to the ones which accumulate at one point exactly the ground state mass. In particular, we prove the existence and stability of large L-2 Mass log-log type solutions which are believed to describe the generic blow up dynamics.
引用
收藏
页码:919 / 962
页数:44
相关论文
共 20 条
[1]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[2]  
Bourgain J., 1997, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V25, P197
[3]  
CAZENAVE T, 1989, LECT NOTES MATH, V1394, P18
[4]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :1-32
[5]  
KWONG MK, 1989, ARCH RATION MECH AN, V105, P243
[6]   RATE OF BLOWUP FOR SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION AT CRITICAL DIMENSION [J].
LANDMAN, MJ ;
PAPANICOLAOU, GC ;
SULEM, C ;
SULEM, PL .
PHYSICAL REVIEW A, 1988, 38 (08) :3837-3843
[7]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P223
[8]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P109
[9]   DETERMINATION OF BLOW-UP SOLUTIONS WITH MINIMAL MASS FOR NONLINEAR SCHRODINGER-EQUATIONS WITH CRITICAL POWER [J].
MERLE, F .
DUKE MATHEMATICAL JOURNAL, 1993, 69 (02) :427-454
[10]   The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrodinger equation [J].
Merle, F ;
Raphael, P .
ANNALS OF MATHEMATICS, 2005, 161 (01) :157-222