Transition-metal-based magnetic refrigerants for room-temperature applications

被引:2568
作者
Tegus, O [1 ]
Brück, E [1 ]
Buschow, KHJ [1 ]
de Boer, FR [1 ]
机构
[1] Univ Amsterdam, Van der Waals Zeeman Inst, NL-1018 XE Amsterdam, Netherlands
关键词
D O I
10.1038/415150a
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic refrigeration techniques based on the magnetocaloric effect (MCE) have recently been demonstrated as a promising alternative to conventional vapour-cycle refrigeration(1). In a material displaying the MCE, the alignment of randomly oriented magnetic moments by an external magnetic field results in heating. This heat can then be removed from the MCE material to the ambient atmosphere by heat transfer. If the magnetic field is subsequently turned off, the magnetic moments randomize again, which leads to cooling of the material below the ambient temperature. Here we report the discovery of a large magnetic entropy change in MnFeP0.45As0.55, a material that has a Curie temperature of about 300 K and which allows magnetic refrigeration at room temperature. The magnetic entropy changes reach values of 14.5 J K-1 kg(-1) and 18 J K-1 kg(-1) for field changes of 2 T and 5 T, respectively. The so-called giant-MCE material Gd5Ge2Si2 (ref. 2) displays similar entropy changes, but can only be used below room temperature. The refrigerant capacity of our material is also significantly greater than that of Gd (ref. 3). The large entropy change is attributed to a field-induced first-order phase transition enhancing the effect of the applied magnetic field.
引用
收藏
页码:150 / 152
页数:3
相关论文
共 12 条
[1]   MAGNETOELASTIC TRANSITION AND ANTIFERRO-FERROMAGNETIC ORDERING IN THE SYSTEM MNFEP1-YASY [J].
BACMANN, M ;
SOUBEYROUX, JL ;
BARRETT, R ;
FRUCHART, D ;
ZACH, R ;
NIZIOL, S ;
FRUCHART, R .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1994, 134 (01) :59-67
[2]  
Beckman O., 1991, HDB MAGNETIC MATERIA, V6, P181, DOI [DOI 10.1016/S1567-2719(05)80057-5, 10.1016/S1567-2719(05)80057-5]
[3]   Making and breaking covalent bonds across the magnetic transition in the giant magnetocaloric material Gd5(Si2Ge2) [J].
Choe, W ;
Pecharsky, VK ;
Pecharsky, AO ;
Gschneidner, KA ;
Young, VG ;
Miller, GJ .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4617-4620
[4]   Direct measurement of the "giant" adiabatic temperature change in Gd5Si2Ge2 [J].
Giguère, A ;
Foldeaki, M ;
Gopal, BR ;
Chahine, R ;
Bose, TK ;
Frydman, A ;
Barclay, JA .
PHYSICAL REVIEW LETTERS, 1999, 83 (11) :2262-2265
[5]   Materials science - Making a bigger chill with magnets [J].
Glanz, J .
SCIENCE, 1998, 279 (5359) :2045-2045
[6]   Recent developments in magnetic refrigeration [J].
Gschneidner, KA ;
Pecharsky, VK ;
Pecharsky, AO ;
Zimm, CB .
RARE EARTHS '98, 1999, 315-3 :69-76
[7]   Nature of the first-order antiferromagnetic-ferromagnetic transition in the Ge-rich magnetocaloric compounds Gd5(SixGe1-x)4 [J].
Morellon, L ;
Blasco, J ;
Algarabel, PA ;
Ibarra, MR .
PHYSICAL REVIEW B, 2000, 62 (02) :1022-1026
[8]   Giant magnetocaloric effect in Gd-5(Si2Ge2) [J].
Pecharsky, VK ;
Gschneidner, KA .
PHYSICAL REVIEW LETTERS, 1997, 78 (23) :4494-4497
[9]   MAGNETIC PHASE-DIAGRAM OF MNAS [J].
PYTLIK, L ;
ZIEBA, A .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1985, 51 (1-3) :199-210
[10]  
Tishin AM, 1999, HANDB MAG M, V12, P395, DOI 10.1016/S1567-2719(99)12008-0