Numerical dispersion analysis of a multi-symplectic scheme for the three dimensional Maxwell's equations

被引:14
作者
Cai, Wenjun [1 ]
Wang, Yushun [1 ]
Song, Yongzhong [1 ]
机构
[1] Nanjing Normal Univ, Sch Math & Sci, Jiangsu Prov Key Lab NSLSCS, Nanjing 210046, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Maxwell's equations; Multi-symplectic scheme; Conservation law; Dispersion relation; Group velocity; BACKWARD ERROR ANALYSIS; MULTISYMPLECTIC GEOMETRY; HAMILTONIAN PDES; INTEGRATORS;
D O I
10.1016/j.jcp.2012.09.043
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we study a multi-symplectic scheme for three dimensional Maxwell's equations in a simple medium. This is a system of PDEs with multi-symplectic structures. We prove that this multi-symplectic scheme preserves the discrete version of local and global energy conservation law and the discrete divergence. Furthermore, we extend the discussion to several dispersion properties of the multi-symplectic scheme including the numerical dispersion relation, the numerical group velocity, the effect of large time steps and the CFL condition. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:330 / 352
页数:23
相关论文
共 33 条
[1]  
[Anonymous], FRONT PROSPECTS CONT
[2]  
[Anonymous], INT J PURE APPL MATH
[3]   Multisymplectic box schemes and the Korteweg-de Vries equation [J].
Ascher, UM ;
McLachlan, RI .
APPLIED NUMERICAL MATHEMATICS, 2004, 48 (3-4) :255-269
[4]   Numerical methods for Hamiltonian PDEs [J].
Bridges, Thomas J. ;
Reich, Sebastian .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (19) :5287-5320
[5]   Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity [J].
Bridges, TJ ;
Reich, S .
PHYSICS LETTERS A, 2001, 284 (4-5) :184-193
[6]   New multisymplectic self-adjoint scheme and its composition scheme for the time-domain Maxwell's equations [J].
Cai, Jiaxiang ;
Wang, Yushun ;
Wang, Bin ;
Jiang, Bin .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (12)
[7]   Multisymplectic Preissman scheme for the time-domain Maxwell's equations [J].
Cai, Jiaxiang ;
Wang, Yushun ;
Qiao, Zhonghua .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (03)
[8]   Multisymplectic geometry, local conservation laws and a multisymplectic integrator for the Zakharov-Kuznetsov equation [J].
Chen, JB .
LETTERS IN MATHEMATICAL PHYSICS, 2003, 63 (02) :115-124
[9]   ENERGY-CONSERVED SPLITTING FINITE-DIFFERENCE TIME-DOMAIN METHODS FOR MAXWELL'S EQUATIONS IN THREE DIMENSIONS [J].
Chen, Wenbin ;
Li, Xingjie ;
Liang, Dong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (04) :1530-1554
[10]  
Feng K., 2002, SYMPLECTIC GEOMETRIC