Upper bounds for discrete moments of the derivatives of the riemann zeta-function on the critical line*

被引:4
作者
Christ, Thomas [1 ]
Kalpokas, Justas [2 ]
机构
[1] Univ Wurzburg, Dept Math, Emil Fischer Str 40, D-97074 Wurzburg, Germany
[2] Vilnius State Univ, Fac Math & Informat, LT-03225 Vilnius, Lithuania
关键词
Riemann zeta-function; value-distribution; critical line; FRACTIONAL MOMENTS;
D O I
10.1007/s10986-012-9170-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assuming the Riemann hypothesis, we establish upper bounds for discrete moments of the Riemann zeta-function and its derivatives on the critical line. Moreover, we express continuous moments of the Riemann zeta-function and its derivatives in terms of these discrete moments. This allows us to give conditional upper bounds for , where l and k are nonnegative integers.
引用
收藏
页码:233 / 248
页数:16
相关论文
共 26 条
[1]  
Bogachev V. I., 2007, MEASURE THEORY, V2, DOI DOI 10.1007/978-3-540-34514-5
[2]  
Bogachev VI., 2007, MEASURE THEORY, VI, II
[3]  
Christ T., LOWER BOUNDS D UNPUB
[4]   SIZE OF RIEMANN ZETA-FUNCTION AT PLACES SYMMETRIC WITH RESPECT TO POINT 1/2 [J].
DIXON, RD ;
SCHOENFE.L .
DUKE MATHEMATICAL JOURNAL, 1966, 33 (02) :291-&
[5]  
Edwards H.M., 1974, Riemann's Zeta Function
[6]  
Gonek S.M., 1985, TOPICS ANAL NUMBER T
[7]  
Gonek S. M., 1993, CONT MATH, V143, P395
[8]   MEAN-VALUES OF THE RIEMANN ZETA-FUNCTION AND ITS DERIVATIVES [J].
GONEK, SM .
INVENTIONES MATHEMATICAE, 1984, 75 (01) :123-141
[9]   Note about zeros in the zeta(s) function of Reimann [J].
Gram, JP .
ACTA MATHEMATICA, 1903, 27 (01) :289-304
[10]  
HARDY GH, 1936, P ROYAL SOC A, V113, P542