Hecke operators on weighted Dedekind symbols

被引:4
作者
Fukuhara, S [1 ]
机构
[1] Tsuda Coll, Dept Math, Kodaira, Tokyo 1878577, Japan
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2006年 / 593卷
关键词
D O I
10.1515/CRELLE.2006.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dedekind symbols generalize the classical Dedekind sums (symbols). The symbols are determined uniquely by their reciprocity laws up to an additive constant. There is a natural isomorphism between the space of Dedekind symbols with polynomial (Laurent polynomial) reciprocity laws and the space of cusp (modular) forms. In this article we introduce Hecke operators on the space of weighted Dedekind symbols. We prove that these newly introduced operators are compatible with Hecke operators on the space of modular forms. As an application, we present formulae to give Fourier coefficients of Hecke eigenforms. In particular we give explicit formulae for generalized Ramanujan's tau functions.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 16 条
[1]   GENERALIZED DEDEKIND SUMS AND TRANSFORMATION FORMULAE OF CERTAIN LAMBERT SERIES [J].
APOSTOL, TM .
DUKE MATHEMATICAL JOURNAL, 1950, 17 (02) :147-157
[2]  
Carlitz L., 1953, Pacific J. Math., V3, P513
[3]   MISSED OPPORTUNITIES [J].
DYSON, FJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 78 (05) :635-&
[4]   Modular forms, generalized Dedekind symbols and period polynomials [J].
Fukuhara, S .
MATHEMATISCHE ANNALEN, 1998, 310 (01) :83-101
[5]   Dedekind symbols with polynomial reciprocity laws [J].
Fukuhara, S .
MATHEMATISCHE ANNALEN, 2004, 329 (02) :315-334
[6]   Generalized Dedekind symbols associated with the Eisenstein series [J].
Fukuhara, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (09) :2561-2568
[7]   HECKE OPERATORS AND AN IDENTITY FOR THE DEDEKIND SUMS [J].
KNOPP, MI .
JOURNAL OF NUMBER THEORY, 1980, 12 (01) :2-9
[8]  
Kohnen W., 1984, Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., P197
[9]  
MACDONALD IG, 1972, INVENT MATH, V15, P91
[10]   DEDEKIND SUMS AND HECKE OPERATORS [J].
PARSON, LA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1980, 88 (JUL) :11-14