Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering

被引:42
作者
Lei, Bo [1 ]
Shin, Kwan-Ha [1 ]
Noh, Da-Young [1 ]
Jo, In-Hwan [1 ]
Koh, Young-Hag [1 ]
Kim, Hyoun-Ee [2 ]
Kim, Sung Eun [3 ,4 ]
机构
[1] Korea Univ, Dept Dent Lab Sci & Engn, Seoul 136703, South Korea
[2] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea
[3] Korea Univ, Dept Orthoped Surg, Coll Med, Seoul 152703, South Korea
[4] Korea Univ, Rare Dis Inst, Coll Med, Seoul 152703, South Korea
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2013年 / 33卷 / 03期
关键词
Bioactive glass; Biodegradation; Polymer; Composite; Hard tissue; Mechanical properties; MECHANICAL-PROPERTIES; IN-VITRO; NANOCOMPOSITES; MICROSPHERES; DEGRADATION; FABRICATION; SCAFFOLDS; POLYMER;
D O I
10.1016/j.msec.2012.11.039
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
This study investigated the effect of the addition of sal-gel derived nanoscale bioactive glass (NBG) particles on the mechanical properties and biological performances of PCL polymer, in order to evaluate the potential applications of PCL/NBG composites for bone tissue regeneration. Regardless of the NBG contents (10, 20, and 30 wt.%), the NBG particles, which were synthesized through the sol-gel process using polyethylene glycol (PEG) polymer as a template, could be uniformly dispersed in the PCL matrix, while generating pores in the PCL/NBG composites. The elastic modulus of the PCL/NBG composites increased remarkably from 89 +/- 11 MPa to 383 +/- 50 MPa with increasing NBG content from 0 to 30 wt.%, while still showing good ultimate tensile strength in the range of 15-19 MPa. The hydrophilicity, water absorption and degradation behavior of the PCL/NBG composites were also enhanced by the addition of the NBG particles. Furthermore, the PCL/NBG composite with a NBG content of 30 wt.% showed significantly enhanced in vitro bioactivity and cellular response compared to those of the pure PCL. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1102 / 1108
页数:7
相关论文
共 38 条
[1]   Biodegradable polymer matrix nanocomposites for tissue engineering: A review [J].
Armentano, I. ;
Dottori, M. ;
Fortunati, E. ;
Mattioli, S. ;
Kenny, J. M. .
POLYMER DEGRADATION AND STABILITY, 2010, 95 (11) :2126-2146
[2]   Polymer/bioactive glass nanocomposites for biomedical applications: A review [J].
Boccaccini, Aldo R. ;
Erol, Melek ;
Stark, Wendelin J. ;
Mohn, Dirk ;
Hong, Zhongkui ;
Mano, Joao F. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (13) :1764-1776
[3]   Preparation and characterization of biodegradable PLA polymeric blends [J].
Chen, CC ;
Chueh, JY ;
Tseng, H ;
Huang, HM ;
Lee, SY .
BIOMATERIALS, 2003, 24 (07) :1167-1173
[4]   Synthesis of poly(ε-caprolactone)/hydroxyapatite nanocomposites using in-situ co-precipitation [J].
Choi, Won-Young ;
Kim, Hyoun-Ee ;
Oh, Se-Yoon ;
Koh, Young-Hag .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2010, 30 (05) :777-780
[5]   Production and Properties of Solvent-Cast Poly(ε-caprolactone) Composites with Carbon Nanostructures [J].
Dottori, M. ;
Armentano, I. ;
Fortunati, E. ;
Kenny, J. M. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 119 (06) :3544-3552
[6]   Influence of nanoparticles and nanofibers of aluminum oxide on the properties of epoxy composites [J].
Dudkin, B. N. ;
Zainullin, G. G. ;
Krivoshapkin, P. V. ;
Krivoshapkina, E. F. ;
Ryazanov, M. A. .
GLASS PHYSICS AND CHEMISTRY, 2008, 34 (02) :187-191
[7]   Advanced Material Strategies for Tissue Engineering Scaffolds [J].
Freed, Lisa E. ;
Engelmayr, George C., Jr. ;
Borenstein, Jeffrey T. ;
Moutos, Franklin T. ;
Guilak, Forshid .
ADVANCED MATERIALS, 2009, 21 (32-33) :3410-3418
[8]   Third-generation biomedical materials [J].
Hench, LL ;
Polak, JM .
SCIENCE, 2002, 295 (5557) :1014-+
[9]   SURFACE-ACTIVE BIOMATERIALS [J].
HENCH, LL ;
WILSON, J .
SCIENCE, 1984, 226 (4675) :630-636
[10]   Fibrous membrane of nano-hybrid poly-L-lactic acid/silica xerogel for guided bone regeneration [J].
Jang, Tae-Sik ;
Lee, Eun-Jung ;
Jo, Ji-Hoon ;
Jeon, Jong-Myeong ;
Kim, Mi-Young ;
Kim, Hyoun-Ee ;
Koh, Young-Hag .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2012, 100B (02) :321-330