Hopf Bifurcation in Fractional Red Blood Cells Model via Time-delayed Feedback Control

被引:0
作者
Qing, Fan [1 ]
Xiao, Min [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210003, Peoples R China
来源
PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC) | 2018年
基金
中国国家自然科学基金;
关键词
Hopf bifurcation; Time-delayed controller; Fractional-order; Red blood cells model; BAM NEURAL-NETWORK; GENETIC REGULATORY NETWORK; PERIODIC-ORBITS; STABILITY; DISCRETE; SYSTEM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a time-delayed feedback controller in a fractional-order red blood cells model. Based on this model, we stlidy the stability and Hopf bifurcation. The time delay of the model can change the stability and cause the generation of bifurcating periodic solutions in the controlled fractional-order red blood cells model. We choose the time delay as the bifurcation parameter. Through the stability analysis, we can see that the controller parameters can affect the stability of the controlled model and change the bifurcation point. Then, we can adjust the proper control parameters to achieve desirable model indicators. Finally, numerical simulations are given to prove the correct of theoretical results.
引用
收藏
页码:901 / 906
页数:6
相关论文
共 49 条
[1]   Hopf bifurcation and chaos in fractional-order modified hybrid optical system [J].
Abdelouahab, Mohammed-Salah ;
Hamri, Nasr-Eddine ;
Wang, Junwei .
NONLINEAR DYNAMICS, 2012, 69 (1-2) :275-284
[2]  
Arora C., 2017, INT C MATH COMP, P246
[3]   Frustration, stability, and delay-induced oscillations in a neural network model [J].
Belair, J ;
Campbell, SA ;
VandenDriessche, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (01) :245-255
[4]   Stability of periodic orbits controlled by time-delay feedback [J].
Bleich, ME ;
Socolar, JES .
PHYSICS LETTERS A, 1996, 210 (1-2) :87-94
[5]   Hopf bifurcation analysis of a system of coupled delayed-differential equations [J].
Celik, C. ;
Merdan, H. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (12) :6605-6617
[6]   Hopf bifurcation control for delayed complex networks [J].
Cheng, Zunshui ;
Cao, Jinde .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2007, 344 (06) :846-857
[7]   Stability and Hopf bifurcation of a three-layer neural network model with delays [J].
Cheng, Zunshui ;
Li, Dehao ;
Cao, Jinde .
NEUROCOMPUTING, 2016, 175 :355-370
[8]   Effect of particle collisions and aggregation on red blood cell passage through a bifurcation [J].
Chesnutt, J. K. W. ;
Marshall, J. S. .
MICROVASCULAR RESEARCH, 2009, 78 (03) :301-313
[9]   Hopf bifurcating periodic orbits in a ring of neurons with delays [J].
Guo, SJ ;
Huang, LH .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 183 (1-2) :19-44
[10]   Stability and Hopf bifurcation analysis for Nicholson's blowflies equation with non- local delay [J].
Hu, Rui ;
Yuan, Yuan .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2012, 23 :777-796