Numerical relativity in spherical polar coordinates: Evolution calculations with the BSSN formulation

被引:59
作者
Baumgarte, Thomas W. [1 ,2 ]
Montero, Pedro J. [1 ]
Cordero-Carrion, Isabel [1 ]
Mueller, Ewald [1 ]
机构
[1] Max Planck Inst Astrophys, D-85748 Garching, Germany
[2] Bowdoin Coll, Dept Phys & Astron, Brunswick, ME 04011 USA
来源
PHYSICAL REVIEW D | 2013年 / 87卷 / 04期
基金
美国国家科学基金会;
关键词
EQUATIONS; WAVES;
D O I
10.1103/PhysRevD.87.044026
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the absence of symmetry assumptions most numerical relativity simulations adopt Cartesian coordinates. While Cartesian coordinates have some desirable properties, spherical polar coordinates appear better suited for certain applications, including gravitational collapse and supernova simulations. Development of numerical relativity codes in spherical polar coordinates has been hampered by the need to handle the coordinate singularities at the origin and on the axis, for example by careful regularization of the appropriate variables. Assuming spherical symmetry and adopting a covariant version of the Baumgarte-Shapiro-Shibata-Nakamura equations, Montero and Cordero-Carrion recently demonstrated that such a regularization is not necessary when a partially implicit Runge-Kutta method is used for the time evolution of the gravitational fields. Here we report on an implementation of the Baumgarte-Shapiro-Shibata-Nakamura equations in spherical polar coordinates without any symmetry assumptions. Using a partially implicit Runge-Kutta method we obtain stable simulations in three spatial dimensions without the need to regularize the origin or the axis. We perform and discuss a number of tests to assess the stability, accuracy and convergence of the code, namely weak gravitational waves, "hydro-without-hydro'' evolutions of spherical and rotating relativistic stars in equilibrium, and single black holes. DOI: 10.1103/PhysRevD.87.044026
引用
收藏
页数:14
相关论文
共 43 条
[1]   Regularization of spherically symmetric evolution codes in numerical relativity [J].
Alcubierre, M ;
González, JA .
COMPUTER PHYSICS COMMUNICATIONS, 2005, 167 (02) :76-84
[2]   Gauge conditions for long-term numerical black hole evolutions without excision -: art. no. 084023 [J].
Alcubierre, M ;
Brügmann, B ;
Diener, P ;
Koppitz, M ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2003, 67 (08)
[3]   Formulations of the 3+1 evolution equations in curvilinear coordinates [J].
Alcubierre, Miguel ;
Mendez, Martha D. .
GENERAL RELATIVITY AND GRAVITATION, 2011, 43 (10) :2769-2806
[4]  
[Anonymous], 2010, NUMERICAL RELATIVITY
[5]  
[Anonymous], ARXIV12115930
[6]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[7]   Gravitational-wave extraction from an inspiraling configuration of merging black holes [J].
Baker, JG ;
Centrella, J ;
Choi, DI ;
Koppitz, M ;
van Meter, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[8]   GENERAL RELATIVISTIC AXISYMMETRIC ROTATING SYSTEMS - COORDINATES AND EQUATIONS [J].
BARDEEN, JM ;
PIRAN, T .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1983, 96 (04) :205-250
[9]   Analytical representation of a black hole puncture solution [J].
Baumgarte, Thomas W. ;
Naculich, Stephen G. .
PHYSICAL REVIEW D, 2007, 75 (06)
[10]   Numerical integration of Einstein's field equations [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICAL REVIEW D, 1999, 59 (02)