Nanorod-Nanoflake Interconnected LiMnPO4•Li3V2(PO4)3/C Composite for High-Rate and Long-Life Lithium-Ion Batteries

被引:47
作者
Cao, Xinxin [1 ]
Pan, Anqiang [1 ]
Zhang, Yifang [1 ]
Li, Jiwei [1 ]
Luo, Zhigao [1 ]
Yang, Xin [1 ]
Liang, Shuquan [1 ]
Cao, Guozhong [2 ]
机构
[1] Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA
基金
国家高技术研究发展计划(863计划); 高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
lithium-ion batteries; cathode materials; phosphates; LiMnPO4 center dot Li3V2(PO4)(3)/C; hybrid nanostructure; HIGH-PERFORMANCE; CATHODE MATERIAL; ELECTROCHEMICAL PROPERTIES; MANGANESE PHOSPHATE; HIGH-CAPACITY; ROUTE; NANOCOMPOSITE; LIMNPO4; NANOSTRUCTURES; LI3V2(PO4)(3);
D O I
10.1021/acsami.6b06456
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Olivine-type structured LiMnPO4 has been extensively studied as a high-energy density cathode material for lithium-ion batteries. However, preparation of high-performance LiMnPO4 is still a large obstacle due to its intrinsically sluggish electrochemical kinetics. Recently, making the composites from both active components has been proven to be a good proposal to improve the electrochemical properties of cathode materials. The composite materials can combine the advantages of each phase and improve the comprehensive properties. Herein, a LiMnPO4 center dot Li3V2(PO4)3/C composite with interconnected nanorods and nanoflakes has been synthesized via a one-pot, solid-state reaction in molten hydrocarbon, where the oleic acid functions as a surfactant. With a highly uniform hybrid architecture, conductive carbon coating, and mutual cross-doping, the LiMnPO4 center dot Li3V2(PO4)(3)/C composite manifests high capacity, good rate capability, and excellent cyclic stability in lithium-ion batteries. The composite electrodes deliver a high reversible capacity of 101.3 mAh g(-1) at the rate up to 16 C. After 4000 long-term cycles, the electrodes can still retain 79.39% and 72.74% of its maximum specific discharge capacities at the rates of 4C and 8C, respectively. The results demonstrate that the nanorod-nanoflake interconnected LiMnPO4 center dot Li3V2(PO4)(3)/C composite is a promising cathode material for high-performance lithium ion batteries.
引用
收藏
页码:27632 / 27641
页数:10
相关论文
共 63 条
[1]   Three-Dimensional Interconnected Vanadium Pentoxide Nanonetwork Cathode for High-Rate Long-Life Lithium Batteries [J].
An, Qinyou ;
Wei, Qiulong ;
Zhang, Pengfei ;
Sheng, Jinzhi ;
Hercule, Kalele Mulonda ;
Lv, Fan ;
Wang, Qinqin ;
Wei, Xiujuan ;
Mai, Liqiang .
SMALL, 2015, 11 (22) :2654-2660
[2]   Nanoflake-Assembled Hierarchical Na3V2(PO4)3/C Microflowers: Superior Li Storage Performance and Insertion/Extraction Mechanism [J].
An, Qinyou ;
Xiong, Fangyu ;
Wei, Qiulong ;
Sheng, Jinzhi ;
He, Liang ;
Ma, Dongling ;
Yao, Yan ;
Mai, Liqiang .
ADVANCED ENERGY MATERIALS, 2015, 5 (10)
[3]  
Brinker CJ, 1999, ADV MATER, V11, P579, DOI 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO
[4]  
2-R
[5]   Conversion of the surface property of oleic acid stabilized silver nanoparticles from hydrophobic to hydrophilic based on host-guest binding interaction [J].
Chen, Ming ;
Ding, WenFua ;
Kong, Yang ;
Diao, GuoWang .
LANGMUIR, 2008, 24 (07) :3471-3478
[6]   MWCNT/V2O5 Core/Shell Sponge for High Areal Capacity and Power Density Li-Ion Cathodes [J].
Chen, Xinyi ;
Zhu, Hongli ;
Chen, Yu-Chen ;
Shang, Yuanyuan ;
Cao, Anyuan ;
Hu, Liangbing ;
Rubloff, Gary W. .
ACS NANO, 2012, 6 (09) :7948-7955
[7]   LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode [J].
Choi, Daiwon ;
Wang, Donghai ;
Bae, In-Tae ;
Xiao, Jie ;
Nie, Zimin ;
Wang, Wei ;
Viswanathan, Vilayanur V. ;
Lee, Yun Jung ;
Zhang, Ji-Guang ;
Graff, Gordon L. ;
Yang, Zhenguo ;
Liu, Jun .
NANO LETTERS, 2010, 10 (08) :2799-2805
[8]   Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures [J].
Cölfen, H ;
Mann, S .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (21) :2350-2365
[9]   One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders [J].
Delacourt, C ;
Poizot, P ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
CHEMISTRY OF MATERIALS, 2004, 16 (01) :93-99
[10]   A new route to zinc-blende CdSe nanocrystals: Mechanism and synthesis [J].
Deng, ZT ;
Cao, L ;
Tang, FQ ;
Zou, BS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (35) :16671-16675