CONVOLUTIONAL LONG-SHORT TERM MEMORY NETWORKS MODEL FOR LONG DURATION EEG SIGNAL CLASSIFICATION

被引:18
作者
Baloglu, Ulas Baran [1 ]
Yildirim, Ozal [1 ]
机构
[1] Munzur Univ, Engn Fac, Comp Engn Dept, Tunceli, Turkey
关键词
Convolutional neural networks; deep learning; EEG classification; long-short term memory; seizure detection; EPILEPTIC SEIZURE DETECTION; NEURAL-NETWORK; AUTOMATED DETECTION; FEATURE-EXTRACTION; IDENTIFICATION; DIAGNOSIS; FEATURES; METHODOLOGY; PREDICTION; ENTROPY;
D O I
10.1142/S0219519419400050
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Background and objective: Deep learning structures have recently achieved remarkable success in the field of machine learning. Convolutional neural networks (CNN) in image processing and long-short term memory (LSTM) in the time-series analysis are commonly used deep learning algorithms. Healthcare applications of deep learning algorithms provide important contributions for computer-aided diagnosis research. In this study, convolutional long-short term memory (CLSTM) network was used for automatic classification of EEG signals and automatic seizure detection. Methods: A new nine-layer deep network model consisting of convolutional and LSTM layers was designed. The signals processed in the convolutional layers were given as an input to the LSTM network whose outputs were processed in densely connected neural network layers. The EEG data is appropriate for a model having 1-D convolution layers. A bidirectional model was employed in the LSTM layer. Results: Bonn University EEG database with five different datasets was used for experimental studies. In this database, each dataset contains 23.6 s duration 100 single channel EEG segments which consist of 4097 dimensional samples (173.61 Hz). Eight two-class and three three-class clinical scenarios were examined. When the experimental results were evaluated, it was seen that the proposed model had high accuracy on both binary and ternary classification tasks. Conclusions: The proposed end-to-end learning structure showed a good performance without using any hand-crafted feature extraction or shallow classifiers to detect the seizures. The model does not require filtering, and also automatically learns to filter the input as well. As a result, the proposed model can process long duration EEG signals without applying segmentation, and can detect epileptic seizures automatically by using the correlation of ictal and interictal signals of raw data.
引用
收藏
页数:21
相关论文
共 59 条
[1]   Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad ;
Tan, Ru San .
APPLIED INTELLIGENCE, 2019, 49 (01) :16-27
[2]   Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adeli, Hojjat .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 :270-278
[3]   Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Raghavendra, U. ;
Tan, Jen Hong ;
Adam, Muhammad ;
Gertych, Arkadiusz ;
Hagiwara, Yuki .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 79 :952-959
[4]   A deep convolutional neural network model to classify heartbeats [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad ;
Gertych, Arkadiusz ;
Tan, Ru San .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 :389-396
[5]   Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad .
INFORMATION SCIENCES, 2017, 415 :190-198
[6]   Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Lih, Oh Shu ;
Adam, Muhammad ;
Tan, Jen Hong ;
Chua, Chua Kuang .
KNOWLEDGE-BASED SYSTEMS, 2017, 132 :62-71
[7]   Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network [J].
Acharya, U. Rajendra ;
Fujita, Hamido ;
Lih, Oh Shu ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad .
INFORMATION SCIENCES, 2017, 405 :81-90
[8]   A Novel Depression Diagnosis Index Using Nonlinear Features in EEG Signals [J].
Acharya, U. Rajendra ;
Sudarshan, Vidya K. ;
Adeli, Hojjat ;
Santhosh, Jayasree ;
Koh, Joel E. W. ;
Puthankatti, Subha D. ;
Adeli, Amir .
EUROPEAN NEUROLOGY, 2015, 74 (1-2) :79-83
[9]   Automated EEG analysis of epilepsy: A review [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Swapna, G. ;
Martis, Roshan Joy ;
Suri, Jasjit S. .
KNOWLEDGE-BASED SYSTEMS, 2013, 45 :147-165
[10]   AUTOMATED DIAGNOSIS OF EPILEPSY USING CWT, HOS AND TEXTURE PARAMETERS [J].
Acharya, U. Rajendra ;
Yanti, Ratna ;
Wei, Zheng Jia ;
Krishnan, M. Muthu Rama ;
Hong, Tan Jen ;
Martis, Roshan Joy ;
Min, Lim Choo .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2013, 23 (03)