New set of generalized legendre moment invariants for pattern recognition

被引:20
作者
Benouini, Rachid [1 ]
Batioua, Imad [1 ]
Zenkouar, Khalid [1 ]
Mrabti, Fatiha [2 ]
El Fadili, Hakim [3 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci & Technol, Lab Intelligent Syst & Applicat, Fes, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Fac Sci & Technol, Lab Signals Syst & Components, Fes, Morocco
[3] Sidi Mohamed Ben Abdellah Univ, Ecole Natl Sci Appl, Fes, Morocco
关键词
Moment invariants; Fractional-order legendre polynomials; Image classification; Rotation scale translation invariants; Systematic parameter selection; Adaptive feature extraction; FOURIER-MELLIN MOMENTS; IMAGE-ANALYSIS;
D O I
10.1016/j.patrec.2019.03.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a new set of rotation, scale and translation invariants, named Generalized Legendre Moment Invariants (GLMI). This new set of invariants is defined on the Cartesian coordinate system, where we can derive the GLMI based on the algebraic relation between the fractional-order Legendre polynomials and the geometric basis. Consequently, several experiments are carried out to evaluate the performance of the proposed GLMI, with regard to their invariability property, object recognition capability and computation efficiency, in comparison with the most representative families of moment invariants. In addition, we have presented a systematic parameter selection method for finding the optimal fractional parameter values with respect to pattern recognition applications. Just as important, we have introduced an adaptive scheme to set the fractional parameters according to the characteristics of the image. The obtained results clearly show that the proposed invariants provide higher features accuracy and discrimination power even in the presence of noisy effects. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:39 / 46
页数:8
相关论文
共 27 条
[1]   Image analysis using new set of separable two-dimensional discrete orthogonal moments based on Racah polynomials [J].
Batioua, Imad ;
Benouini, Rachid ;
Zenkouar, Khalid ;
El Fadili, Hakim .
EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2017,
[2]   Fractional-order orthogonal Chebyshev Moments and Moment Invariants for image representation and pattern recognition [J].
Benouini, Rachid ;
Batioua, Imad ;
Zenkouar, Khalid ;
Zahi, Azeddine ;
Najah, Said ;
Qjidaa, Hassan .
PATTERN RECOGNITION, 2019, 86 :332-343
[3]   High-precision and fast computation of Jacobi-Fourier moments for image description [J].
Camacho-Bello, C. ;
Toxqui-Quitl, C. ;
Padilla-Vivanco, A. ;
Baez-Rojas, J. J. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (01) :124-134
[4]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA
[5]   Robust histogram-based image retrieval [J].
Hoeschl, Cyril ;
Flusser, Jan .
PATTERN RECOGNITION LETTERS, 2016, 69 :72-81
[6]   Image representation using accurate orthogonal Gegenbauer moments [J].
Hosny, Khalid M. .
PATTERN RECOGNITION LETTERS, 2011, 32 (06) :795-804
[7]   VISUAL-PATTERN RECOGNITION BY MOMENT INVARIANTS [J].
HU, M .
IRE TRANSACTIONS ON INFORMATION THEORY, 1962, 8 (02) :179-&
[8]   Image moment invariants as local features for content based image retrieval using the Bag-of-Visual-Words model [J].
Karakasis, E. G. ;
Amanatiadis, A. ;
Gasteratos, A. ;
Chatzichristofis, S. A. .
PATTERN RECOGNITION LETTERS, 2015, 55 :22-27
[9]   Generalized dual Hahn moment invariants [J].
Karakasis, E. G. ;
Papakostas, G. A. ;
Koulouriotis, D. E. ;
Tourassis, V. D. .
PATTERN RECOGNITION, 2013, 46 (07) :1998-2014
[10]   Fractional-order Legendre functions for solving fractional-order differential equations [J].
Kazem, S. ;
Abbasbandy, S. ;
Kumar, Sunil .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (07) :5498-5510