A constitutive model for finite deformation of amorphous polymers

被引:45
作者
Fleischhauer, R. [1 ]
Dal, H. [1 ]
Kaliske, M. [1 ]
Schneider, K. [2 ]
机构
[1] Tech Univ Dresden, Inst Struct Anal, D-01062 Dresden, Germany
[2] Leibniz Inst Polymer Res Dresden, D-01005 Dresden, Germany
关键词
Amorphous polymer; Constitutive model; Finite deformation; Algorithmic setting; Strain rate dependence; Pressure dependence; RUBBER-LIKE MATERIALS; MECHANICALLY COUPLED THEORY; LOGARITHMIC STRAIN SPACE; GLASSY-POLYMERS; YIELD-STRESS; WIDE-RANGE; ELEMENT IMPLEMENTATION; PLASTIC-DEFORMATION; PART I; BEHAVIOR;
D O I
10.1016/j.ijmecsci.2012.09.003
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The paper introduces a three-dimensional constitutive model for the mechanical behavior of amorphous polymers, thermosets and thermoplastics. The approach is formulated in terms of finite deformations, appropriate for glassy polymers. The rheology of the model consists of a Langevin-type free energy function for the energy storage due to molecular alignment connected in parallel to a Maxwell element with a viscoplastic dashpot. The model proves successful for the constitutive description of glassy polymers over a large range of strain rates. To capture the smooth softening behavior upon yielding is the main purpose of this research. It is reached under consideration of absolute temperature and current strain rate with the proposed evolution law for the viscoplastic dashpot deformation. The rate-dependence of amorphous polymers is reproduced as well as the pressure dependence during different loading scenarios. A fully implicit numerical scheme appropriate for the finite element implementation is presented. The modeling capability of the proposed approach is demonstrated for epoxy. PC and PMMA. The efficiency of the proposed numerical scheme is demonstrated via a necking simulation of a flat PC coupon. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 63
页数:16
相关论文
共 44 条
[1]   A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications [J].
Ames, Nicoli M. ;
Srivastava, Vikas ;
Chester, Shawn A. ;
Arland, Lallit .
INTERNATIONAL JOURNAL OF PLASTICITY, 2009, 25 (08) :1495-1539
[2]   A theory of amorphous solids undergoing large deformations, with application to polymeric glasses [J].
Anand, L ;
Gurtin, ME .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2003, 40 (06) :1465-1487
[3]   A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: Formulation [J].
Anand, Lallit ;
Ames, Nicoli M. ;
Srivastava, Vikas ;
Chester, Shawn A. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2009, 25 (08) :1474-1494
[4]   THEORY FOR LOW-TEMPERATURE PLASTIC-DEFORMATION OF GLASSY POLYMERS [J].
ARGON, AS .
PHILOSOPHICAL MAGAZINE, 1973, 28 (04) :839-865
[5]   EFFECTS OF STRAIN-RATE, TEMPERATURE AND THERMOMECHANICAL COUPLING ON THE FINITE STRAIN DEFORMATION OF GLASSY-POLYMERS [J].
ARRUDA, EM ;
BOYCE, MC ;
JAYACHANDRAN, R .
MECHANICS OF MATERIALS, 1995, 19 (2-3) :193-212
[6]   A 3-DIMENSIONAL CONSTITUTIVE MODEL FOR THE LARGE STRETCH BEHAVIOR OF RUBBER ELASTIC-MATERIALS [J].
ARRUDA, EM ;
BOYCE, MC .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1993, 41 (02) :389-412
[7]  
Ashby M.F., 1986, ENG MAT, V2
[8]   TENSILE YIELD-STRESS BEHAVIOR OF POLY(VINYL CHLORIDE) AND POLYCARBONATE IN GLASS TRANSITION REGION [J].
BAUWENS, JC ;
BAUWENSC.C ;
HOMES, G .
JOURNAL OF POLYMER SCIENCE PART A-2-POLYMER PHYSICS, 1969, 7 (10PA) :1745-&
[10]   COMPRESSION YIELD BEHAVIOR OF POLYMETHYL METHACRYLATE OVER A WIDE-RANGE OF TEMPERATURES AND STRAIN-RATES [J].
BAUWENSCROWET, C .
JOURNAL OF MATERIALS SCIENCE, 1973, 8 (07) :968-979