Topology of the mitochondrial inner membrane: Dynamics and bioenergetic implications

被引:181
|
作者
Mannella, CA
Pfeiffer, DR
Bradshaw, PC
Moraru, II
Slepchenko, B
Loew, LM
Hsieh, C
Buttle, K
Marko, M
机构
[1] Wadsworth Ctr Labs & Res, Div Mol Med, Resource Visualizat Biol Complex, Albany, NY 12201 USA
[2] Ohio State Univ, Dept Med Biochem, Columbus, OH 43210 USA
[3] Univ Connecticut, Ctr Hlth, Farmington, CT 06030 USA
关键词
mitochondria; electron microscopy; tomography;
D O I
10.1080/15216540152845885
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Electron tomography indicates that the mitochondrial inner membrane is not normally comprised of baffle-like folds as depicted in textbooks. In actuality, this membrane is pleomorphic, with narrow tubular regions connecting the internal compartments (cristae) to each other and to the membrane periphery. The membrane topologies observed in condensed (matrix contracted) and orthodox (matrix expanded) mitochondria cannot be interconverted by passive folding and unfolding. Instead, transitions between these morphological states likely involve membrane fusion and fission. Formation of tubular junctions in the inner membrane appears to be energetically favored, because they form spontaneously in yeast mitochondria following large-amplitude swelling and recontraction. However, aberrant, unattached, vesicular cristae are also observed in these mitochondria, suggesting that formation of cristae junctions depends on factors (such as the distribution of key proteins and/or lipids) that are disrupted during extreme swelling. Computer modeling studies using the "Virtual Cell" program suggest that the shape of the inner membrane can influence mitochondrial function. Simulations indicate that narrow cristae junctions restrict diffusion between intracristal and external compartments, causing depletion of ADP and decreased ATP output inside the cristae.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 50 条
  • [21] Biogenesis of the mitochondrial inner membrane
    Koehler, C
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2004, 1657 : 14 - 15
  • [22] The mechanism of spermine cycling across the inner mitochondrial membrane and its pathophysiological implications
    Grancara, S.
    Martinis, P.
    Agostinelli, E.
    Tempera, G.
    Bragadin, M.
    Toninello, A.
    FEBS JOURNAL, 2013, 280 : 256 - 256
  • [23] Energetic requirements and bioenergetic modulation of mitochondrial morphology and dynamics
    Sauvanet, Cecile
    Duvezin-Caubet, Stephane
    di Rago, Jean-Paul
    Rojo, Manuel
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2010, 21 (06) : 558 - 565
  • [24] Examination of bioenergetic function in the inner mitochondrial membrane peptidase 2-like (Immp2l) mutant mice
    Bharadwaj, Manish S.
    Zhou, Yu
    Molina, Anthony J.
    Criswell, Tracy
    Lu, Baisong
    REDOX BIOLOGY, 2014, 2 : 1008 - 1015
  • [25] Protein crowding in the inner mitochondrial membrane
    Schlame, Michael
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2021, 1862 (01):
  • [26] Pathways shaping the mitochondrial inner membrane
    Klecker, Till
    Westermann, Benedikt
    OPEN BIOLOGY, 2021, 11 (12)
  • [27] PERMEABILITY OF MITOCHONDRIAL INNER MEMBRANE TO SUCROSE
    GAMBLE, JL
    BIOCHIMICA ET BIOPHYSICA ACTA, 1970, 211 (02) : 223 - +
  • [28] ARRANGEMENT OF PROTEINS IN THE MITOCHONDRIAL INNER MEMBRANE
    CAPALDI, RA
    BIOCHIMICA ET BIOPHYSICA ACTA, 1982, 694 (03) : 291 - 306
  • [29] MITOCHONDRIAL INNER MEMBRANE PROPERTIES IN HYPOTHYROIDISM
    CHEN, YDI
    FEDERATION PROCEEDINGS, 1975, 34 (03) : 314 - 314
  • [30] ELECTROPHYSIOLOGY OF THE INNER MITOCHONDRIAL-MEMBRANE
    ZORATTI, M
    SZABO, I
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1994, 26 (05) : 543 - 553