Morphological control of inverted MgO-SiO2 composite catalysts for efficient conversion of ethanol to 1,3-butadiene

被引:34
作者
Li, Shenxiao [1 ]
Men, Yong [1 ]
Wang, Jinguo [1 ]
Liu, Shuang [1 ]
Wang, Xuefei [1 ]
Ji, Fei [1 ]
Chai, Shanshan [1 ]
Song, Qiaoling [1 ]
机构
[1] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Ethanol; 1,3-butadiene; MgO-SiO2; Mg-O-Si bonds; Flower-like; Morphological control; SILICA MIXED OXIDES; SELECTIVE SYNTHESIS; CARBON NANOTUBES; BIO-ETHANOL; BUTADIENE; MGO; TRANSFORMATION; NANOPARTICLES; REACTIVITY; STEP;
D O I
10.1016/j.apcata.2019.03.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, three novel MgO-SiO2 composite catalysts with inverted structure have been synthesized via a facile and scalable strategy by means of the incipient wetness impregnation of the silica sol onto MgO precursors with different morphologies, and evaluated for the one-step conversion of ethanol to 1,3-butadiene. The prepared flower-like MgO-SiO2 composite catalysts exhibited highly enhanced catalytic activity than those catalysts synthesized from MgO precursors with nanodisks and nanosheets morphologies. Characterization results based on XRD, FT-IR, UV vis, BET, CO2-TPD, NH,-TPD, ethanol-TPD, and Si-29 MAS NMR revealed that unique layered flower-like architectures may facilitate the formation of interfacial Mg-O-Si chemical bond in binary MgO-SiO2 composite catalysts which are mainly responsible for the superior activity. This study presents a new strategy to design and develop the catalyst for efficient conversion of bio-ethanol to 1,3-butadiene by morphological control of MgO-SiO2 bifunctional catalysts.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
[31]   Catalysis by MgO and the Role of Zn2+ in Talc Catalysts for the Selective Production of 1,3-Butadiene from Ethanol [J].
Miyaji, Akimitsu ;
Hiza, Misao ;
Sekiguchi, Yasumasa ;
Akiyama, Sohta ;
Shiga, Akinobu ;
Baba, Toshihide .
JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2018, 61 (03) :171-181
[32]   Catalytic study of the conversion of ethanol into 1,3-butadiene [J].
Makshina, E. V. ;
Janssens, W. ;
Sels, B. F. ;
Jacobs, P. A. .
CATALYSIS TODAY, 2012, 198 (01) :338-344
[33]   Catalytic Conversion of Ethanol Into 1,3-Butadiene: Achievements and Prospects: A Review [J].
Kyriienko, P. I. ;
Larina, O. V. ;
Soloviev, S. O. ;
Orlyk, S. M. .
THEORETICAL AND EXPERIMENTAL CHEMISTRY, 2020, 56 (04) :213-242
[34]   Selective Conversion of Ethanol and Acetaldehyde to 1,3-Butadiene Over Zr-HMS Catalysts [J].
Shuying Li ;
Bin Huang ;
Changzi Jin ;
Rui Wang ;
Heng Jiang ;
Guang-Sheng Yang ;
Shengjun Huang .
Catalysis Surveys from Asia, 2023, 27 :207-216
[35]   The deactivation of a ZnO doped ZrO2-SiO2 catalyst in the conversion of ethanol/acetaldehyde to 1,3-butadiene [J].
Zhang, Minhua ;
Tan, Xuechao ;
Zhang, Tong ;
Han, Zheng ;
Jiang, Haoxi .
RSC ADVANCES, 2018, 8 (59) :34069-34077
[36]   The effect of lanthanum in Cu/La(-Zr)-Si oxide catalysts for aqueous ethanol conversion into 1,3-butadiene [J].
Kyriienko, Pavlo, I ;
Larina, Olga, V ;
Balakin, Dmytro Yu ;
Vorokhta, Mykhailo ;
Khalakhan, Ivan ;
Sergiienko, Sergii A. ;
Soloviev, Sergiy O. ;
Orlyk, Svitlana M. .
MOLECULAR CATALYSIS, 2022, 518
[37]   Catalytic conversion of ethanol to 1,3-butadiene on MgO: A comprehensive mechanism elucidation using DFT calculations [J].
Taifan, William E. ;
Bucko, Tomas ;
Baltrusaitis, Jonas .
JOURNAL OF CATALYSIS, 2017, 346 :78-91
[38]   Insights into the mechanism of ethanol conversion into 1,3-butadiene on Zr-β zeolite [J].
Zhang, Minhua ;
Guan, Xinyue ;
Zhuang, Jianyu ;
Yu, Yingzhe .
APPLIED SURFACE SCIENCE, 2022, 579
[39]   The influence of zinc loadings on the selectivity control of bio-ethanol transformation over MgO-SiO2 catalysts [J].
Wang, Xuefei ;
Men, Yong ;
Wang, Jinguo ;
Liu, Shuang ;
Song, Qiaoling ;
Yang, Mei .
APPLIED CATALYSIS A-GENERAL, 2020, 598 (598)
[40]   Catalytic Conversion of Ethanol Into 1,3-Butadiene: Achievements and Prospects: A Review [J].
P. I. Kyriienko ;
O. V. Larina ;
S. O. Soloviev ;
S. M. Orlyk .
Theoretical and Experimental Chemistry, 2020, 56 :213-242