ON THE STABILITY OF DRYGAS FUNCTIONAL EQUATION ON GROUPS

被引:9
|
作者
Faiziev, Valerii A. [2 ]
Sahoo, Prasanna K. [1 ]
机构
[1] Univ Louisville, Dept Math, Louisville, KY 40292 USA
[2] Tver State Agr Acad, Tver Sakharovo, Russia
来源
BANACH JOURNAL OF MATHEMATICAL ANALYSIS | 2007年 / 1卷 / 01期
关键词
Additive character of a group; bihomomorphism; Drygas functional equation; homomorphism; Jensen functional equation; metabelian group; n-Abelian group; quadratic functional equation;
D O I
10.15352/bjma/1240321554
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the stability of the system of functional equations f(xy) + f(xy(-1)) = 2f(x) + f(y) + f(y(-1)) and f(yx) + f(y(-1)x) = 2f(x) + f(y) + f(y(-1)) on groups. Here f is a real-valued function that takes values on a group. Among others we proved the following results: 1) the system, in general, is not stable on an arbitrary group; 2) the system is stable on Heisenberg group UT(3, K), where K is a commutative field with characteristic different from two; 3) the system is stable on certain class of n-Abelian groups; 4) any group can be embedded into a group where this system is stable.
引用
收藏
页码:43 / 55
页数:13
相关论文
共 50 条
  • [1] On Drygas functional equation on groups
    Faiziev, Valerii A.
    Sahoo, Prasanna K.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2007, 7 (F07): : 59 - 69
  • [2] Stability of a functional equation of Drygas
    Jung S.-M.
    Sahoo P.K.
    aequationes mathematicae, 2002, 64 (3) : 263 - 273
  • [3] Stability of Drygas functional equation on T(3, R)
    Faiziev, Valerii A.
    Sahoo, Prasanna K.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2007, 7 (F07): : 70 - 81
  • [4] On the Drygas functional equation in restricted domains
    Chung, Jaeyoung
    AEQUATIONES MATHEMATICAE, 2016, 90 (04) : 799 - 808
  • [5] Variations on the Drygas equation and its stability
    Forti, Gian-Luigi
    Sikorska, Justyna
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (02) : 343 - 350
  • [6] On the Drygas functional equation in restricted domains
    Jaeyoung Chung
    Aequationes mathematicae, 2016, 90 : 799 - 808
  • [7] Hyers-Ulam stability of the Drygas type functional equation
    Sayyari, Yamin
    Dehghanian, Mehdi
    Mohammadhasani, Ahmad
    Nassiri, Mohammad Javad
    JOURNAL OF ANALYSIS, 2025, 33 (01) : 225 - 233
  • [8] Ultrametric approximations of a Drygas functional equation
    Charifi, Ahmed
    Rassias, John M.
    Almahalebi, Muaadh
    Kabbaj, Samir
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2016, 7 (03) : 155 - 164
  • [9] The application of Brzdek's fiixed point theorem in the stability problem of the Drygas functional equation
    Dehghanian, Mehdi
    Sayyari, Yamin
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (06)
  • [10] ON THE HYPERSTABILITY OF THE DRYGAS FUNCTIONAL EQUATION ON A RESTRICTED DOMAIN
    Senasukh, Jedsada
    Saejung, Satit
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 102 (01) : 126 - 137