Vector breather-to-soliton transitions and nonlinear wave interactions induced by higher-order effects in an erbium-doped fiber

被引:8
|
作者
Sun, Wen-Rong [1 ,2 ]
Wang, Lei [3 ]
Xie, Xi-Yang [4 ,5 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Key Lab Magnetophotoelect Composite & Int, Beijing 100083, Peoples R China
[3] North China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China
[4] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[5] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Vector breather-to-soliton transitions; Higher-order NLS-MB system with sextic terms; Darboux transformation; Breather-soliton interactions; SCHRODINGER-EQUATION; OPTICAL SOLITONS; ROGUE WAVES; LIGHT; PROPAGATION; MEDIA;
D O I
10.1016/j.physa.2018.01.038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Vector breather-to-soliton transitions for the higher-order nonlinear Schrodinger-Maxwell-Bloch (NLS-MB) system with sextic terms are investigated. The Lax pair and Darboux transformation (DT) of such system are constructed. With the DT, analytic vector breather solutions up to the second order are obtained. With appropriate choices of the spectra parameters, vector breather-to-soliton transitions happen. Interaction mechanisms of vector nonlinear waves (breather-soliton or soliton-soliton interactions) are displayed. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 66
页数:9
相关论文
共 50 条
  • [31] Multi-Soliton Solutions for an Inhomogeneous Nonlinear Schrodinger-Maxwell-Bloch System in the Erbium-Doped Fiber
    Wang, Ming
    Shan, Wen-Rui
    Lu, Xing
    Qin, Bo
    Liu, Li-Cai
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (12): : 712 - 720
  • [32] DARBOUX TRANSFORMATIONS, MULTISOLITONS, BREATHER AND ROGUE WAVE SOLUTIONS FOR A HIGHER-ORDER DISPERSIVE NONLINEAR SCHRODINGER EQUATION
    Zhang, Hong-Yi
    Zhang, Yu-Feng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (02): : 892 - 902
  • [33] Scaling the effective area of higher-order-mode erbium-doped fiber amplifiers
    Nicholson, J. W.
    Fini, J. M.
    DeSantolo, A. M.
    Liu, X.
    Feder, K.
    Westbrook, P. S.
    Supradeepa, V. R.
    Monberg, E.
    DiMarcello, F.
    Ortiz, R.
    Headley, C.
    DiGiovanni, D. J.
    OPTICS EXPRESS, 2012, 20 (22): : 24575 - 24584
  • [34] Nanosecond Pulse Amplification in a 6000 μm2 Effective Area Higher-Order Mode Erbium-Doped Fiber Amplifier
    Nicholson, J. W.
    Fini, J. M.
    Phillips, J.
    DeSantolo, A.
    Liu, X.
    Feder, K.
    Supradeepa, V. R.
    Westbrook, P.
    Monberg, E.
    DiMarcello, F.
    Headley, C.
    DiGiovanni, D. J.
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [35] Study on propagation properties of one-soliton in a multimode fiber with higher-order effects
    Zhou, Qin
    Sun, Yunzhou
    Triki, Houria
    Zhong, Yu
    Zeng, Zhongliang
    Mirzazadeh, Mohammad
    RESULTS IN PHYSICS, 2022, 41
  • [36] Integrability and bright soliton solutions to the coupled nonlinear Schrodinger equation with higher-order effects
    Wang, Deng-Shan
    Yin, Shujuan
    Tian, Ye
    Liu, Yifang
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 229 : 296 - 309
  • [37] Higher-order effects induced optical solitons in fiber
    Qin, Y
    Dai, CQ
    Zhang, JF
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (08) : 1117 - 1121
  • [38] New observation on the breather for a generalized nonlinear Schrodinger system with two higher-order dispersion operators in inhomogeneous optical fiber
    Guan, Wen-Yang
    Li, Bang-Qing
    OPTIK, 2019, 181 : 853 - 861
  • [39] Study on propagation properties of fractional soliton in the inhomogeneous fiber with higher-order effects
    Liu, Muwei
    Wang, Haotian
    Yang, Hujiang
    Liu, Wenjun
    NONLINEAR DYNAMICS, 2024, 112 (02) : 1327 - 1337
  • [40] Breather and rogue wave solutions of an extended nonlinear Schrodinger equation with higher-order odd and even terms
    Su, Dan
    Yong, Xuelin
    Tian, Yanjiao
    Tian, Jing
    MODERN PHYSICS LETTERS B, 2018, 32 (26):