Mutation pairs and quotient categories of Abelian categories

被引:2
|
作者
Zhou, Panyue [1 ]
Xu, Jinde [2 ]
Ouyang, Baiyu [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing, Peoples R China
[2] Hunan Normal Univ, Coll Math & Comp Sci, Key Lab High Performance Comp & Stochast Informat, Minist Educ China, Changsha 410081, Hunan, Peoples R China
关键词
Abelian category; cotorsion pair; -mutation pair; quotient category; triangulated category; 18E10; 18E30; 18E40; TRIANGULATED CATEGORIES;
D O I
10.1080/00927872.2016.1175581
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of ?-mutation pairs of subcategories in an abelian category is defined in this article. When (?,?) is a ?-mutation pair in an abelian category ?, the quotient category ?/? carries naturally a triangulated structure. Moreover, our result generalize the construction of the quotient triangulated category by Happel [10, Theorem 2.6]. Finally, we find a one-to-one correspondence between cotorsion pairs in ? and cotorsion pairs in the quotient category ?/?, and study homological finiteness of subcategories in a mutation pair.
引用
收藏
页码:392 / 410
页数:19
相关论文
共 50 条
  • [32] Abelian quotients of extriangulated categories
    He, Jing
    Zhou, Panyue
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2019, 129 (04):
  • [33] Abelian quotients of triangulated categories
    Grimeland, Benedikte
    Jacobsen, Karin Marie
    JOURNAL OF ALGEBRA, 2015, 439 : 110 - 133
  • [34] Regular morphisms in abelian categories
    Crivei, Septimiu
    Kosan, M. Tamer
    Yildirim, Tulay
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (09)
  • [35] Abelian quotients of categories of short exact sequences
    Lin, Zengqiang
    JOURNAL OF ALGEBRA, 2020, 551 : 61 - 92
  • [36] From n-exangulated categories to n-abelian categories
    Liu, Yu
    Zhou, Panyue
    JOURNAL OF ALGEBRA, 2021, 579 : 210 - 230
  • [37] From triangulated categories to abelian categories: cluster tilting in a general framework
    Steffen Koenig
    Bin Zhu
    Mathematische Zeitschrift, 2008, 258 : 143 - 160
  • [38] Abelian Quotients Arising from Extriangulated Categories via Morphism Categories
    Lin, Zengqiang
    ALGEBRAS AND REPRESENTATION THEORY, 2023, 26 (01) : 117 - 136
  • [39] From triangulated categories to abelian categories: cluster tilting in a general framework
    Koenig, Steffen
    Zhu, Bin
    MATHEMATISCHE ZEITSCHRIFT, 2008, 258 (01) : 143 - 160
  • [40] Balanced Pairs on Triangulated Categories☆
    Fu, Xianhui
    Hu, Jiangsheng
    Zhang, Dongdong
    Zhu, Haiyan
    ALGEBRA COLLOQUIUM, 2023, 30 (03) : 385 - 394