Mutation pairs and quotient categories of Abelian categories

被引:2
|
作者
Zhou, Panyue [1 ]
Xu, Jinde [2 ]
Ouyang, Baiyu [2 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing, Peoples R China
[2] Hunan Normal Univ, Coll Math & Comp Sci, Key Lab High Performance Comp & Stochast Informat, Minist Educ China, Changsha 410081, Hunan, Peoples R China
关键词
Abelian category; cotorsion pair; -mutation pair; quotient category; triangulated category; 18E10; 18E30; 18E40; TRIANGULATED CATEGORIES;
D O I
10.1080/00927872.2016.1175581
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of ?-mutation pairs of subcategories in an abelian category is defined in this article. When (?,?) is a ?-mutation pair in an abelian category ?, the quotient category ?/? carries naturally a triangulated structure. Moreover, our result generalize the construction of the quotient triangulated category by Happel [10, Theorem 2.6]. Finally, we find a one-to-one correspondence between cotorsion pairs in ? and cotorsion pairs in the quotient category ?/?, and study homological finiteness of subcategories in a mutation pair.
引用
收藏
页码:392 / 410
页数:19
相关论文
共 50 条
  • [1] MUTATION PAIRS IN ABELIAN CATEGORIES
    Xu, Jinde
    Zhou, Panyue
    Ouyang, Baiyu
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (07) : 2732 - 2746
  • [2] n-angulated quotient categories induced by mutation pairs
    Zengqiang Lin
    Czechoslovak Mathematical Journal, 2015, 65 : 953 - 968
  • [3] n-angulated quotient categories induced by mutation pairs
    Lin, Zengqiang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (04) : 953 - 968
  • [4] A note on abelian quotient categories
    Zhou, Panyue
    JOURNAL OF ALGEBRA, 2020, 551 : 1 - 8
  • [5] Quotient categories of extriangulated categories
    Zheng, Qilian
    Cao, Weiqing
    Wei, Jiaqun
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (01) : 364 - 382
  • [6] n-Abelian quotient categories
    Zhou, Panyue
    Zhu, Bin
    JOURNAL OF ALGEBRA, 2019, 527 : 264 - 279
  • [7] Yoneda extensions of abelian quotient categories
    Ebrahimi, Ramin
    JOURNAL OF ALGEBRA, 2023, 616 : 212 - 226
  • [8] Torsion pairs in recollements of abelian categories
    Ma, Xin
    Huang, Zhaoyong
    FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (04) : 875 - 892
  • [9] From recollement of triangulated categories to recollement of abelian categories
    LIN YaNan 1 & WANG MinXiong 1
    2 School of Mathematical Sciences
    Science China(Mathematics), 2010, 53 (04) : 1111 - 1116
  • [10] From recollement of triangulated categories to recollement of abelian categories
    YaNan Lin
    MinXiong Wang
    Science China Mathematics, 2010, 53 : 1111 - 1116