ADR-Net: Context extraction network based on M-Net for medical image segmentation

被引:9
|
作者
Ji, Lingyu [1 ]
Jiang, Xiaoyan [1 ]
Gao, Yongbin [1 ]
Fang, Zhijun [1 ]
Cai, Qingping [2 ]
Wei, Ziran [2 ]
机构
[1] Shanghai Univ Engn Sci, Sch Elect & Elect Engn, Shanghai 201620, Peoples R China
[2] Changzheng Hosp, Shanghai 200003, Peoples R China
关键词
attention gate mechanism; deep Learning; dilation convolution; medical image segmentation; residual; spatial pyramid pooling;
D O I
10.1002/mp.14364
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Medical image segmentation is an essential component of medical image analysis. Accurate segmentation can assist doctors in diagnosis and relieve their fatigue. Although several image segmentation methods based on U-Net have been proposed, their performances have been observed to be suboptimal in the case of small-sized objects. To address this shortcoming, a novel network architecture is proposed in this study to enhance segmentation performance on small medical targets. Methods In this paper, we propose a joint multi-scale context attention network architecture to simultaneously capture higher level semantic information and spatial information. In order to obtain a greater number of feature maps during decoding, the network concatenates the images of side inputs by down-sampling during the encoding phase. In the bottleneck layer of the network, dense atrous convolution (DAC) and multi-scale residual pyramid pooling (RMP) modules are exploited to better capture high-level semantic information and spatial information. To improve the segmentation performance on small targets, the attention gate (AG) block is used to effectively suppress feature activation in uncorrelated regions and highlight the target area. Results The proposed model is first evaluated on the public dataset DRIVE, on which it performs significantly better than the basic framework in terms of sensitivity (SE), intersection-over-union (IOU), and area under the receiver operating characteristic curve (AUC). In particular, the SE and IOU are observed to increase by 7.46% and 5.97%, respectively. Further, the evaluation indices exhibit improvements compared to those of state-of-the-art methods as well, with SE and IOU increasing by 3.58% and 3.26%, respectively. Additionally, in order to demonstrate the generalizability of the proposed architecture, we evaluate our model on three other challenging datasets. The respective performances are observed to be better than those of state-of-the-art network architectures on the same datasets. Moreover, we use lung segmentation as a comparative experiment to demonstrate the transferability of the advantageous properties of the proposed approach in the context of small target segmentation to the segmentation of large targets. Finally, an ablation study is conducted to investigate the individual contributions of the AG block, the DAC block, and the RMP block to the performance of the network. Conclusions The proposed method is evaluated on various datasets. Experimental results demonstrate that the proposed model performs better than state-of-the-art methods in medical image segmentation of small targets.
引用
收藏
页码:4254 / 4264
页数:11
相关论文
共 50 条
  • [21] PL-Net: progressive learning network for medical image segmentation
    Mao, Kunpeng
    Li, Ruoyu
    Cheng, Junlong
    Huang, Danmei
    Song, Zhiping
    Liu, Zekui
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [22] SAU-Net: Medical Image Segmentation Method Based on U-Net and Self-Attention
    Zhang S.-J.
    Peng Z.
    Li H.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (10): : 2433 - 2442
  • [23] LMU-Net: lightweight U-shaped network for medical image segmentation
    Ting Ma
    Ke Wang
    Feng Hu
    Medical & Biological Engineering & Computing, 2024, 62 : 61 - 70
  • [24] DGFAU-Net: Global feature attention upsampling network for medical image segmentation
    Dunlu Peng
    Xi Yu
    Wenjia Peng
    Jianping Lu
    Neural Computing and Applications, 2021, 33 : 12023 - 12037
  • [25] DGFAU-Net: Global feature attention upsampling network for medical image segmentation
    Peng, Dunlu
    Yu, Xi
    Peng, Wenjia
    Lu, Jianping
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (18): : 12023 - 12037
  • [26] AdaResU-Net: Multiobjective adaptive convolutional neural network for medical image segmentation
    Baldeon-Calisto, Maria
    Lai-Yuen, Susana K.
    NEUROCOMPUTING, 2020, 392 : 325 - 340
  • [27] UCR-Net: U-shaped context residual network for medical image
    Sun, Qi
    Dai, Mengyun
    Lan, Ziyang
    Cai, Fanggang
    Wei, Lifang
    Yang, Changcai
    Chen, Riqing
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 151
  • [28] MIRD-Net for Medical Image Segmentation
    Huang, Yongfeng
    Li, Xueyang
    Yan, Cairong
    Liu, Lihao
    Dai, Hao
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2020, PT II, 2020, 12085 : 207 - 219
  • [29] A novel MCF-Net: Multi-level context fusion network for 2D medical image segmentation
    Liu, Lizhu
    Liu, Yexin
    Zhou, Jian
    Guo, Cheng
    Duan, Huigao
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 226
  • [30] TransU2-Net: An Effective Medical Image Segmentation Framework Based on Transformer and U2-Net
    Li, Xiang
    Fang, Xianjin
    Yang, Gaoming
    Su, Shuzhi
    Zhu, Li
    Yu, Zekuan
    IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2023, 11 : 441 - 450