CONNECTING SYMMETRIC AND ASYMMETRIC FAMILIES OF PERIODIC ORBITS IN SQUARED SYMMETRIC HAMILTONIANS

被引:2
作者
Blesa, Fernando [1 ]
Piasecki, Slawomir [2 ]
Dena, Angeles [4 ]
Barrio, Roberto [2 ,3 ]
机构
[1] Univ Zaragoza, Dept Fis Aplicada, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
[4] Ctr Univ Def, E-50090 Zaragoza, Spain
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2012年 / 23卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
Periodic orbits; symmetric Hamiltonians; bifurcations of periodic orbits; FAST LYAPUNOV INDICATOR; CELESTIAL MECHANICS; NORMAL-FORM; SYSTEMS; BIFURCATIONS; DYNAMICS; EXPLORATION; MAPPINGS; SCARS; CHAOS;
D O I
10.1142/S0129183112500143
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, we study a generic squared symmetric Hamiltonian of two degrees of freedom. Our aim is to show a global methodology to analyze the evolution of the families of periodic orbits and their bifurcations. To achieve it, we use several numerical techniques such as a systematic grid search algorithm in sequential and parallel, a fast chaos indicator and a tool for the continuation of periodic orbits. Using them, we are able to study the special and generic bifurcations of multiplicity one that allow us to understand the dynamics of the system and we show in detail the evolution of some symmetric breaking periodic orbits.
引用
收藏
页数:22
相关论文
共 54 条
[21]  
DeVogelaere R., 1958, CONTRIBUTIONS THEORY, VIV, P53
[22]  
Doedel E.J., 2007, AUTO-07P: Continuation and bifurcation software for ordinary differential equations
[23]   Complete Poincare sections and tangent sets [J].
Dullin, HR ;
Wittek, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (24) :7157-7180
[24]   RIGID BODY IN TORQUE-FREE ROTATION PATTERN IN A MODEL OF QUARTIC COUPLED OSCILLATORS AND ITS BIFURCATIONS [J].
FERRER, S ;
MARCO, MJ ;
OSACAR, C ;
PALACIAN, JF .
PHYSICS LETTERS A, 1990, 146 (7-8) :411-420
[25]   On the relationship between fast Lyapunov indicator and periodic orbits for continuous flows [J].
Fouchard, M ;
Lega, E ;
Froeschlé, C ;
Froeschlé, C .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2002, 83 (1-4) :205-222
[26]   On the structure of symplectic mappings.: The fast Lyapunov indicator:: A very sensitive tool [J].
Froeschlé, C ;
Lega, E .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2000, 78 (1-4) :167-195
[27]   BOUND-STATE EIGENFUNCTIONS OF CLASSICALLY CHAOTIC HAMILTONIAN-SYSTEMS - SCARS OF PERIODIC-ORBITS [J].
HELLER, EJ .
PHYSICAL REVIEW LETTERS, 1984, 53 (16) :1515-1518
[28]  
HENON M, 1969, ASTRON ASTROPHYS, V1, P223
[29]  
HENON M, 1965, ANN ASTROPHYS, V28, P992
[30]   Phase mixing in time-independent Hamiltonian systems [J].
Kandrup, HE .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1998, 301 (04) :960-974