Redescending M-estimators

被引:37
|
作者
Shevlyakov, Georgy [2 ]
Morgenthaler, Stephan [1 ]
Shurygin, Alexander [3 ]
机构
[1] Ecole Polytech Fed Lausanne, SB IMA, CH-1015 Lausanne, Switzerland
[2] Gwangju Inst Sci & Technol, Sch Informat & Mechatron, Kwangju, South Korea
[3] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow, Russia
关键词
M-estimators; minimax robustness; change-of-variance function; redescending M-estimators;
D O I
10.1016/j.jspi.2007.11.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
in finite sample studies redescending M-estimators outperform bounded M-estimators (see for example, Andrews et al. [1972. Robust Estimates of Location. Princeton University Press, Princeton]). Even though redescenders arise naturally out of the maximum likelihood approach if one uses very heavy-tailed models, the commonly used redescenders have been derived from purely heuristic considerations. Using a recent approach proposed by Shurygin, we study the optimality of redescending M-estimators. We show that redescending M-estimator can be designed by applying a global minimax criterion to locally robust estimators, namely maximizing over a class of densities the minimum variance sensitivity over a class of estimators. As a particular result, we prove that Smith's estimator, which is a compromise between Huber's skipped mean and Tukey's biweight, provides a guaranteed level of an estimator's variance sensitivity over the class of densities with a bounded variance. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2906 / 2917
页数:12
相关论文
共 50 条
  • [31] Large deviations for M-estimators
    Arcones, MA
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2006, 58 (01) : 21 - 52
  • [32] Influence functions for penalized M-estimators
    Avella-Medina, Marco
    BERNOULLI, 2017, 23 (4B) : 3178 - 3196
  • [33] M-ESTIMATORS OF SCATTER WITH EIGENVALUE SHRINKAGE
    Ollila, Esa
    Palomar, Daniel P.
    Pascal, Frederic
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5305 - 5309
  • [34] Continuous M-estimators and their interpolation by polynomials
    Pang, JS
    Yu, TPY
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (03) : 997 - 1017
  • [35] Asymptotic distribution of regression M-estimators
    Arcones, MA
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 97 (02) : 235 - 261
  • [36] Regularized M-Estimators of Scatter Matrix
    Ollila, Esa
    Tyler, David E.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (22) : 6059 - 6070
  • [37] M-estimators and robust fuzzy clustering
    Dave, RN
    Krishnapuram, R
    1996 BIENNIAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1996, : 400 - 404
  • [38] The bias and skewness of M-estimators in regression
    Withers, Christopher
    Nadarajah, Saralees
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1 - 14
  • [39] ON SHRINKAGE M-ESTIMATORS OF LOCATION PARAMETERS
    SALEH, AKME
    SEN, PK
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1985, 14 (10) : 2313 - 2329
  • [40] M-estimators of location for functional data
    Sinova, Beatriz
    Gonzalez-Rodriguez, Gil
    Van Aelst, Stefan
    BERNOULLI, 2018, 24 (03) : 2328 - 2357