Wavelet decomposition of hydrodynamic and acoustic pressures in the near field of the jet

被引:54
作者
Mancinelli, Matteo [1 ]
Pagliaroli, Tiziano [1 ]
Di Marco, Alessandro [1 ]
Camussi, Roberto [1 ]
Castelain, Thomas [2 ]
机构
[1] Univ Rome Tre, Dipartimento Ingn, Via Vasca Navale 79, I-00146 Rome, Italy
[2] Ecole Cent Lyon, UMR 5509, Lab Mecan Fluides & Acoust, 36 Ave Guy de Collongue, F-69134 Ecully, France
关键词
aeroacoustics; intermittency; jet noise; SUBSONIC ROUND JET; COHERENT STRUCTURES; TURBULENT JET; INSTABILITY WAVES; REYNOLDS-NUMBER; NOISE; INTERMITTENCY; FLUCTUATIONS; FLOWS; AEROACOUSTICS;
D O I
10.1017/jfm.2016.869
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An experimental investigation of pressure fluctuations generated by a single-stream compressible jet is carried out in an anechoic wind tunnel. Measurements are performed using a linear array of microphones installed in the near region of the jet and a polar arc of microphones in the far field. The main focus of the paper is on the analysis of the pressure fluctuations in the near field. rfliree novel signal processing techniques are presented to provide the decomposition of the near-field pressure into hydrodynamic and acoustic components. The procedures are all based on the application of the wavelet transform to the measured pressure data and possess the distinctive property of requiring a very simple arrangement to obtain the desired results (one or two microphones at most). The hydrodynamic and acoustic pressures are characterized separately in terms of their spectral and statistical quantities and a direct link between the acoustic pressure extracted from the near field and the actual noise in the far field is established. The analysis of the separated pressure components sheds light on the nearly Gaussian nature/intermittent behaviour of the acoustic/hydrodynamic pressure. The higher sensitivity of the acoustic component to the Mach number variation has been highlighted as well as the different propagation velocities of the two pressure components. The achieved outcomes are validated through the application to the same data of existing separation procedures evidencing the advantages and limitations of the new methods.
引用
收藏
页码:716 / 749
页数:34
相关论文
共 53 条
[41]  
Ross S.M., 2014, Introduction to Probability and Statistics for Engineers and Scientists, V5th
[42]   Wavelet tools to study intermittency: application to vortex bursting [J].
Ruppert-Felsot, Jori ;
Farge, Marie ;
Petitjeans, Philippe .
JOURNAL OF FLUID MECHANICS, 2009, 636 :427-453
[43]   Instability waves in a subsonic round jet detected using a near-field phased microphone array [J].
Suzuki, Takao ;
Colonius, Tim .
JOURNAL OF FLUID MECHANICS, 2006, 565 (197-226) :197-226
[44]   The sources of jet noise: experimental evidence [J].
Tam, Christopher K. W. ;
Viswanathan, K. ;
Ahuja, K. K. ;
Panda, J. .
JOURNAL OF FLUID MECHANICS, 2008, 615 :253-292
[45]  
Tam CKW., 1996, 961716 AIAA, P1716, DOI DOI 10.2514/6.1996-1716
[46]   The near pressure field of co-axial subsonic jets [J].
Tinney, C. E. ;
Jordan, P. .
JOURNAL OF FLUID MECHANICS, 2008, 611 :175-204
[47]   A time-resolved estimate of the turbulence and sound source mechanisms in a subsonic jet flow [J].
Tinney, C. E. ;
Jordan, P. ;
Hall, A. M. ;
Delville, J. ;
Glauser, M. N. .
JOURNAL OF TURBULENCE, 2007, 8 (07) :1-20
[48]  
Torrence C, 1998, B AM METEOROL SOC, V79, P61, DOI 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO
[49]  
2
[50]  
Ukeiley L. S., 2004, International Journal of Aeroacoustics, V3, P43, DOI 10.1260/147547204323022257