Littlewood-Richardson coefficients for reflection groups

被引:2
作者
Berenstein, Arkady [1 ]
Richmond, Edward [2 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Flag variety; Schubert varieties; Kac-Moody groups; Reflection groups; NIL HECKE RING; EQUIVARIANT COHOMOLOGY; SCHUBERT POLYNOMIALS; BRUHAT ORDER; RULE; POSITIVITY; VARIETIES; PUZZLES; PRODUCT;
D O I
10.1016/j.aim.2015.07.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we explicitly compute all Littlewood-Richardson coefficients for semisimple and Kac-Moody groups G, that is, the structure constants (also known as the Schubert structure constants) of the cohomology algebra H*(G/P, C), where P is a parabolic subgroup of G. These coefficients are of importance in enumerative geometry, algebraic combinatorics and representation theory. Our formula for the Littlewood-Richardson coefficients is purely combinatorial and is given in terms of the Cartan matrix and the Weyl group of G. However, if some off-diagonal entries of the Cartan matrix are 0 or -1, the formula may contain negative summands. On the other hand, if the Cartan matrix satisfies a(ij) a(ji) >= 4 for all i, j, then each summand in our formula is nonnegative that implies nonnegativity of all Littlewood-Richardson coefficients. We extend this and other results to the structure coefficients of the T-equivariant cohomology of flag varieties GIP and Bott Samelson varieties Gamma(i)(G). (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:54 / 111
页数:58
相关论文
共 55 条
[1]  
Anderson D., 2015, EQUIVARIANT CO UNPUB
[2]  
[Anonymous], 1997, With applications to representation theory and geometry
[3]   Eigenvalue problem and a new product in cohomology of flag varieties [J].
Belkale, Prakash ;
Kumar, Shrawan .
INVENTIONES MATHEMATICAE, 2006, 166 (01) :185-228
[4]   Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion [J].
Berenstein, A ;
Sjamaar, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (02) :433-466
[5]  
Berenstein A., 2010, ARXIV10081773
[6]   Schubert polynomials, the Bruhat order, and the geometry of flag manifolds [J].
Bergeron, N ;
Sottile, F .
DUKE MATHEMATICAL JOURNAL, 1998, 95 (02) :373-423
[7]  
Bergeron N., 2002, T AM MATH SOC, V354, P4815
[8]   Quantum multiplication of Schur polynomials [J].
Bertram, A ;
Ciocan-Fontanine, I ;
Fulton, W .
JOURNAL OF ALGEBRA, 1999, 219 (02) :728-746
[9]   SCHUBERT POLYNOMIALS FOR THE CLASSICAL-GROUPS [J].
BILLEY, S ;
HAIMAN, M .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (02) :443-482
[10]   Kostant polynomials and the cohomology ring for G/B [J].
Billey, SC .
DUKE MATHEMATICAL JOURNAL, 1999, 96 (01) :205-224