Finite element analysis of post-buckling dynamics in plates - Part I: An asymptotic approach

被引:32
作者
Chen, Hui [1 ]
Virgin, Lawrence N. [1 ]
机构
[1] Duke Univ, Pratt Sch Engn, Durham, NC 27708 USA
关键词
finite elements; bifurcation; frequencies; mode jumping;
D O I
10.1016/j.ijsolstr.2005.04.036
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Various static and dynamic aspects of post-buckled thin plates, including the transition of buckled patterns, postbuckling dynamics, secondary bifurcation, and dynamic snapping (mode jumping phenomenon), are investigated systematically using asymptotical and non-stationary finite element methods. In part 1, the secondary dynamic instability and the local post-secondary buckling behavior of thin rectangular plates under generalized (mechanical and thermal) loading is investigated using an asymptotic numerical method which combines Koiter's nonlinear instability theory with the finite element technique. A dynamic multi-mode reduction method-similar to its static single-mode counterpart: Liapunov-Schmidt reduction-is developed in this perturbation approach. Post-secondary buckling equilibrium branches are obtained by solving the reduced low-dimensional parametric equations and their stability properties are determined directly by checking the eigenvalues of the resulting Jacobian matrix. Typical post-secondary buckling forms-transcritical, supercritical and subcritical bifurcations are observed according to different combinations of boundary conditions and load types. Geometric imperfection analysis shows that not only the secondary bifurcation load but also changes in the fundamental post-secondary buckling behavior are affected. The post-buckling dynamics and the global analysis of mode jumping of the plates are addressed in part II. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3983 / 4007
页数:25
相关论文
共 41 条
[1]  
[Anonymous], 1997, AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations, user's Manual
[2]   A HIGH-CONTINUITY FINITE-ELEMENT MODEL FOR TWO-DIMENSIONAL ELASTIC PROBLEMS [J].
ARISTODEMO, M .
COMPUTERS & STRUCTURES, 1985, 21 (05) :987-993
[3]   Secondary buckling patterns of a thin plate under in-plane compression [J].
Audoly, B ;
Roman, B ;
Pocheau, A .
EUROPEAN PHYSICAL JOURNAL B, 2002, 27 (01) :7-10
[4]   Stability of straight delamination blisters [J].
Audoly, B .
PHYSICAL REVIEW LETTERS, 1999, 83 (20) :4124-4127
[5]  
Budiansky B., 1974, Advances in Applied Mechanicas, VVolume 14, P1
[6]   FINITE-ELEMENT ASYMPTOTIC ANALYSIS OF SLENDER ELASTIC STRUCTURES - A SIMPLE APPROACH [J].
CASCIARO, R ;
SALERNO, G ;
LANZO, AD .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 35 (07) :1397-1426
[7]  
CASCIARO R, 1991, NONLINAR PROBLEMS EN, V4, P66
[8]   Dynamic analysis of modal shifting and mode jumping in thermally buckled plates [J].
Chen, H ;
Virgin, LN .
JOURNAL OF SOUND AND VIBRATION, 2004, 278 (1-2) :233-256
[9]  
CHEN H, IN PRESS INT J SOLID
[10]  
CHEN H, 2004, THESIS DUKE U DURHAM