Vortex stability in nearly-two-dimensional Bose-Einstein condensates with attraction

被引:114
作者
Mihalache, D
Mazilu, D
Malomed, BA
Lederer, F
机构
[1] Univ Jena, Inst Solid State Theory & Theoret Opt, D-077743 Jena, Germany
[2] Natl Inst Phys & Nucl Engn, Dept Theoret Phys, Inst Atom Phys, Bucharest, Romania
[3] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 04期
关键词
D O I
10.1103/PhysRevA.73.043615
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We perform accurate investigation of stability of localized vortices in an effectively two-dimensional ('' pancake-shaped '') trapped Bose-Einstein condensate with negative scattering length. The analysis combines computation of the stability eigenvalues and direct simulations. The states with vorticity S = 1 are stable in a third of their existence region, 0 < N < (1/3)N-max((S=1)), where N is the number of atoms, and N-max((S=1)) is the corresponding collapse threshold. Stable vortices easily self-trap from arbitrary initial configurations with embedded vorticity. In an adjacent interval, (1/3)N-max((S=1)) < N < 0.43N(max)((S=1)), the unstable vortex periodically splits in two fragments and recombines. At N > 0.43N(max)((S=1)), the fragments do not recombine, as each one collapses by itself. The results are compared with those in the full three-dimensional (3D) Gross-Pitaevskii equation. In a moderately anisotropic 3D configuration, with the aspect ratio root 10, the stability interval of the S=1 vortices occupies approximate to 40% of their existence region, hence the two-dimensional (2D) limit provides for a reasonable approximation in this case. For the isotropic 3D configuration, the stability interval expands to 65% of the existence domain. Overall, the vorticity heightens the actual collapse threshold by a factor of up to 2. All vortices with S >= 2 are unstable.
引用
收藏
页数:10
相关论文
共 73 条
[11]   Ring vortex solitons in nonlocal nonlinear media [J].
Briedis, D ;
Petersen, DE ;
Edmundson, D ;
Krolikowski, W ;
Bang, O .
OPTICS EXPRESS, 2005, 13 (02) :435-443
[12]  
CARR LD, CONDMAT040891
[13]   Stable vortex dipoles in nonrotating Bose-Einstein condensates -: art. no. 063609 [J].
Crasovan, LC ;
Vekslerchik, V ;
Pérez-García, VM ;
Torres, JP ;
Mihalache, D ;
Torner, L .
PHYSICAL REVIEW A, 2003, 68 (06) :5
[14]   Three-dimensional parallel vortex rings in Bose-Einstein condensates -: art. no. 033605 [J].
Crasovan, LC ;
Pérez-García, VM ;
Danaila, I ;
Mihalache, D ;
Torner, L .
PHYSICAL REVIEW A, 2004, 70 (03) :033605-1
[15]   Globally linked vortex clusters in trapped wave fields -: art. no. 036612 [J].
Crasovan, LC ;
Molina-Terriza, G ;
Torres, JP ;
Torner, L ;
Pérez-García, VM ;
Mihalache, D .
PHYSICAL REVIEW E, 2002, 66 (03) :1-036612
[16]   Spinning solitons in cubic-quintic nonlinear media [J].
Crasovan, LC ;
Malomed, BA ;
Mihalache, D .
PRAMANA-JOURNAL OF PHYSICS, 2001, 57 (5-6) :1041-1059
[17]   Bosons in anisotropic traps: Ground state and vortices [J].
Dalfovo, F ;
Stringari, S .
PHYSICAL REVIEW A, 1996, 53 (04) :2477-2485
[18]   Stability, multistability, and wobbling of optical gap solitons [J].
De Rossi, A ;
Conti, C ;
Trillo, S .
PHYSICAL REVIEW LETTERS, 1998, 81 (01) :85-88
[19]   Approximate solutions of the nonlinear Schrodinger equation for ground and excited states of Bose-Einstein condensates [J].
Dodd, RJ .
JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 1996, 101 (04) :545-552
[20]   Vortex lattice dynamics in a dilute gas BEC [J].
Engels, P ;
Coddington, I ;
Schweikhard, V ;
Cornell, EA .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2004, 134 (1-2) :683-688