PROPERTIES OF THE SOLUTIONS OF THE CONJUGATE HEAT EQUATIONS

被引:0
作者
Hamilton, Richard [1 ]
Sesum, Natasa [1 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
RICCI FLOW; CONVERGENCE; MANIFOLDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the class A of those solutions u(x,t) to the conjugate heat equation partial derivative/partial derivative tu = -Delta u + Ru on compact Kahler manifolds M with c(1) > 0 (where g(t) changes by the unnormalized Kahler Ricci flow, blowing up at T < infinity), which satisfy Perelman's differential Harnack inequality (6) on [0, T]. We show A is nonempty. If vertical bar Ric (g(t))vertical bar <= C/T-1, which is always true if we have a type 1 singularity, we prove the solution u(x, t) satisfies the elliptic type Harnack inequality, with the constants that are uniform in time. If the flow g(t) has a type I singularity at T. then A has exactly one element.
引用
收藏
页码:153 / 169
页数:17
相关论文
共 50 条
[31]   Positive solutions of a class of semilinear equations with absorption and Schrodinger equations [J].
Ancona, Alano ;
Marcus, Moshe .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (03) :587-618
[32]   An Inertial Spectral Conjugate Gradient Method for Monotone Nonlinear Equations With Applications [J].
Abdullahi, Muhammad ;
Pan, Kejia ;
Abubakar, Auwal Bala ;
Halilu, Abubakar Sani .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (11) :10623-10638
[33]   SYMMETRIC-CONJUGATE SPLITTING METHODS FOR EVOLUTION EQUATIONS OF PARABOLIC TYPE [J].
Blanes, S. ;
Casas, F. ;
Gonzalez, C. ;
Thalhammer, M. .
JOURNAL OF COMPUTATIONAL DYNAMICS, 2024, 11 (01) :108-134
[34]   Oriented associativity equations and symmetry consistent conjugate curvilinear coordinate nets [J].
Pavlov, Maxim V. ;
Sergyeyev, Artur .
JOURNAL OF GEOMETRY AND PHYSICS, 2014, 85 :46-59
[35]   NUMERICAL COUPLING PROCEDURE IN STEADY CONJUGATE HEAT TRANSFER PROBLEMS [J].
Errera, M. -P. ;
Chemin, S. .
COMPUTATIONAL METHODS FOR COUPLED PROBLEMS IN SCIENCE AND ENGINEERING V, 2013, :918-926
[36]   Conjugate dynamics on center-manifolds for stochastic partial differential equations [J].
Zhao, Junyilang ;
Shen, Jun ;
Lu, Kening .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (07) :5997-6054
[37]   A family of conjugate gradient methods for large-scale nonlinear equations [J].
Feng, Dexiang ;
Sun, Min ;
Wang, Xueyong .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
[38]   On Ancient Solutions of the Heat Equation [J].
Lin, Fanghua ;
Zhang, Q. S. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (09) :2006-2028
[39]   A modified PRP conjugate gradient method for unconstrained optimization and nonlinear equations [J].
Cui, Haijuan .
APPLIED NUMERICAL MATHEMATICS, 2024, 205 :296-307
[40]   Compactness of solutions to nonlocal elliptic equations [J].
Niu, Miaomiao ;
Peng, Zhipeng ;
Xiong, Jingang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (09) :2333-2372