A new family of Markov branching trees: the alpha-gamma model

被引:26
作者
Chen, Bo [1 ]
Ford, Daniel [2 ]
Winkel, Matthias [1 ]
机构
[1] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[2] Google Inc, Mountain View, CA 94043 USA
关键词
Alpha-gamma tree; splitting rule; sampling consistency; self-similar fragmentation; dislocation measure; continuum random tree; R-tree; Markov branching model; SELF-SIMILAR FRAGMENTATIONS; CONTINUUM RANDOM TREE;
D O I
10.1214/EJP.v14-616
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a simple tree growth process that gives rise to a new two-parameter family of discrete fragmentation trees that extends Ford's alpha model to multifurcating trees and includes the trees obtained by uniform sampling from Duquesne and Le Gall's stable continuum random tree. We call these new trees the alpha-gamma trees. In this paper, we obtain their splitting rules, dislocation measures both in ranked order and in sized-biased order, and we study their limiting behaviour.
引用
收藏
页码:400 / 430
页数:31
相关论文
共 24 条
[1]   THE CONTINUUM RANDOM TREE-III [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1993, 21 (01) :248-289
[2]   THE CONTINUUM RANDOM TREE .1. [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1991, 19 (01) :1-28
[3]  
Aldous D., 1996, Random discrete structures, P1, DOI [10.1007/978-1-4612-0719-11, DOI 10.1007/978-1-4612-0719-1_1, 10.1007/978-1-4612-0719-1_1]
[4]  
[Anonymous], 2006, LECT NOTES MATH
[5]   Self-similar fragmentations [J].
Bertoin, J .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (03) :319-340
[6]   Homogeneous fragmentation processes [J].
Bertoin, J .
PROBABILITY THEORY AND RELATED FIELDS, 2001, 121 (03) :301-318
[7]  
Bertoin J., 2006, Cambridge Studies in Advanced Mathematics, V102
[8]   Probabilistic and fractal aspects of Levy trees [J].
Duquesne, T ;
Le Gall, JF .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 131 (04) :553-603
[9]  
DUQUESNE T, 2002, ASTERISQUE
[10]   Rayleigh processes, real trees, and root growth with re-grafting [J].
Evans, SN ;
Pitman, J ;
Winter, A .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 134 (01) :81-126