Predicting intrinsic brain activity

被引:22
作者
Craddock, R. Cameron [1 ,2 ,3 ]
Milham, Michael P. [2 ,3 ]
LaConte, Stephen M. [1 ,4 ,5 ,6 ]
机构
[1] Virginia Tech, Caril Res Inst, Roanoke, VA 24016 USA
[2] Child Mind Inst, Ctr Developing Brain, New York, NY USA
[3] Nathan S Kline Inst Psychiat Res, Orangeburg, NY 10962 USA
[4] Virginia Polytech Inst & State Univ, Sch Biomed Engn & Sci, Blacksburg, VA 24061 USA
[5] Virginia Tech, Caril Sch Med, Dept Emergency Med, Roanoke, VA 24016 USA
[6] Virginia Tech, Caril Sch Med, Dept Radiol, Roanoke, VA 24016 USA
关键词
Resting state; Multivariate; Multi-voxel pattern analysis; MVPA; Regression; Functional connectivity; Effective connectivity; Functional magnetic resonance imaging fMRI; FUNCTIONAL NEUROIMAGING EXPERIMENTS; QUANTITATIVE-EVALUATION; PREPROCESSING CHOICES; FMRI; STATES; INFORMATION; NOISE; REGRESSION; SELECTION; PATTERNS;
D O I
10.1016/j.neuroimage.2013.05.072
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Multivariate supervised learning methods exhibit a remarkable ability to decode externally driven sensory, behavioral, and cognitive states from functional neuroimaging data. Although they are typically applied to task-based analyses, supervised learning methods are equally applicable to intrinsic effective and functional connectivity analyses. The obtained models of connectivity incorporate the multivariate interactions between all brain regions simultaneously, which will result in a more accurate representation of the connectome than the ones available with standard bivariate methods. Additionally the models can be applied to decode or predict the time series of intrinsic brain activity of a region from an independent dataset The obtained prediction accuracy provides a measure of the integration between a brain region and other regions in its network, as well as a method for evaluating acquisition and preprocessing pipelines for resting state fMRI data. This article describes a method for learning multivariate models of connectivity. The method is applied in the non-parametric prediction accuracy, influence, and reproducibility-resampling (NPAIRS) framework, to study the regional variation of prediction accuracy and reproducibility (Strother et al., 2002). The resulting spatial distribution of these metrics is consistent with the functional hierarchy proposed by Mesulam (1998). Additionally we illustrate the utility of the multivariate regression connectivity modeling method for optimizing experimental parameters and assessing the quality of functional neuroimaging data. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:127 / 136
页数:10
相关论文
共 61 条
[1]  
[Anonymous], 2007, LEARN DATA CONCEPTS, DOI DOI 10.1002/9780470140529.CH4.[38]L
[2]  
[Anonymous], 1999, Advances in kernel methods: Support vector learning
[3]  
[Anonymous], 2019, HUM BRAIN MAPP, DOI DOI 10.1002/HBM.460010108
[4]  
[Anonymous], 1996, ADV NEURAL INFORM PR
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[7]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[8]   Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures [J].
Braun, Urs ;
Plichta, Michael M. ;
Esslinger, Christine ;
Sauer, Carina ;
Haddad, Leila ;
Grimm, Oliver ;
Mier, Daniela ;
Mohnke, Sebastian ;
Heinz, Andreas ;
Erk, Susanne ;
Walter, Henrik ;
Seiferth, Nina ;
Kirsch, Peter ;
Meyer-Lindenberg, Andreas .
NEUROIMAGE, 2012, 59 (02) :1404-1412
[9]   Wavelets and functional magnetic resonance imaging of the human brain [J].
Bullmore, ET ;
Fadili, J ;
Maxim, V ;
Sendur, L ;
Whitcher, B ;
Suckling, J ;
Brammer, M ;
Breakspear, M .
NEUROIMAGE, 2004, 23 :S234-S249
[10]   Practical selection of SVM parameters and noise estimation for SVM regression [J].
Cherkassky, V ;
Ma, YQ .
NEURAL NETWORKS, 2004, 17 (01) :113-126