Symmetric polynomials on rearrangement-invariant function spaces

被引:68
作者
González, M
Gonzalo, R
Jaramillo, JA
机构
[1] Univ Cantabria, Fac Ciencias, Santander 39071, Spain
[2] Univ Complutense, Fac Matemat, Dept Anal Matemat, E-28040 Madrid, Spain
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 1999年 / 59卷
关键词
D O I
10.1112/S0024610799007164
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The exact representation of symmetric polynomials on Banach spaces with symmetric basis and also on separable rearrangement-invariant function spaces over [0, 1] and [0, infinity) is given. As a consequence of this representation it is obtained that, among these spaces, l(2n), L-2n[0, 1], L-2n[0, infinity) and L-2n[0, infinity) boolean AND L-2n[0, infinity) where n, nl are both integers are the only spaces that admit separating polynomials.
引用
收藏
页码:681 / 697
页数:17
相关论文
共 50 条
[41]   On compactness of Sobolev embeddings in rearrangement-invariant spaces [J].
Pustylnik, Evgeniy .
FORUM MATHEMATICUM, 2006, 18 (05) :839-852
[42]   Sublinear operators on radial rearrangement-invariant quasi-Banach function spaces [J].
K.-P. Ho .
Acta Mathematica Hungarica, 2020, 160 :88-100
[43]   SUMS OF INDEPENDENT RANDOM-VARIABLES IN REARRANGEMENT-INVARIANT FUNCTION-SPACES [J].
JOHNSON, WB ;
SCHECHTMAN, G .
ANNALS OF PROBABILITY, 1989, 17 (02) :789-808
[44]   Sublinear operators on radial rearrangement-invariant quasi-Banach function spaces [J].
Ho, K. -P. .
ACTA MATHEMATICA HUNGARICA, 2020, 160 (01) :88-100
[45]   2 RESULTS ON REARRANGEMENT-INVARIANT SPACES ON AN INFINITE INTERVAL [J].
ABRAMOVICH, YA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 149 (01) :249-254
[46]   Sobolev embeddings, rearrangement-invariant spaces and Frostman measures [J].
Cianchi, Andrea ;
Pick, Lubos ;
Slavikova, Lenka .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (01) :105-144
[47]   Sobolev embeddings, rearrangement-invariant spaces and Frostman measures [J].
Cianchi, Andrea ;
Pick, Luboš ;
Slavíková, Lenka .
Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 2020, 37 (01) :105-144
[49]   APPROXIMATION BY POLYNOMIALS IN REARRANGEMENT INVARIANT QUASI BANACH FUNCTION SPACES [J].
Akgun, Ramazan .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2012, 6 (02) :113-131
[50]   REMARK ON SINGULAR INTEGRAL OPERATORS OF CONVOLUTION TYPE ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES [J].
Karlovych, Oleksiy ;
Shargorodsky, Eugene .
REAL ANALYSIS EXCHANGE, 2023, 48 (01) :139-148