Symmetric polynomials on rearrangement-invariant function spaces

被引:63
作者
González, M
Gonzalo, R
Jaramillo, JA
机构
[1] Univ Cantabria, Fac Ciencias, Santander 39071, Spain
[2] Univ Complutense, Fac Matemat, Dept Anal Matemat, E-28040 Madrid, Spain
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 1999年 / 59卷
关键词
D O I
10.1112/S0024610799007164
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The exact representation of symmetric polynomials on Banach spaces with symmetric basis and also on separable rearrangement-invariant function spaces over [0, 1] and [0, infinity) is given. As a consequence of this representation it is obtained that, among these spaces, l(2n), L-2n[0, 1], L-2n[0, infinity) and L-2n[0, infinity) boolean AND L-2n[0, infinity) where n, nl are both integers are the only spaces that admit separating polynomials.
引用
收藏
页码:681 / 697
页数:17
相关论文
共 50 条
  • [21] ON ROSENTHAL INEQUALITY AND REARRANGEMENT-INVARIANT SPACES
    BRAVERMAN, MS
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1993, 34 (01) : 25 - 29
  • [22] NOTE ON LINEARITY OF REARRANGEMENT-INVARIANT SPACES
    Soudsky, Filip
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (02): : 232 - 239
  • [23] The Fourier Transform on Rearrangement-Invariant Spaces
    Kerman, Ron
    Rawat, Rama
    Singh, Rajesh K.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2024, 30 (04)
  • [24] HILBERT TRANSFORM ON REARRANGEMENT-INVARIANT SPACES
    BOYD, DW
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (03): : 599 - &
  • [25] The packing constant in rearrangement-invariant spaces
    Appell, J
    Semenov, EM
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1998, 32 (04) : 273 - 275
  • [26] Martingale inequalities on rearrangement-invariant quasi-Banach function spaces
    Ho K.-P.
    [J]. Acta Scientiarum Mathematicarum, 2017, 83 (3-4): : 619 - 627
  • [27] Gagliardo-Nirenberg Inequality for rearrangement-invariant Banach function spaces
    Fiorenza, Alberto
    Formica, Maria Rosaria
    Roskovec, Tomas
    Soudsky, Filip
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2019, 30 (04) : 847 - 864
  • [28] Absolutely Continuous Embeddings of Rearrangement-Invariant Spaces
    Fernandez-Martinez, Pedro
    Manzano, Antonio
    Pustylnik, Evgeniy
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2010, 7 (04) : 539 - 552
  • [29] Rearrangement-invariant hulls of weighted Lebesgue spaces
    Krepela, Martin
    Mihula, Zdenek
    Soria, Javier
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (02)
  • [30] REARRANGEMENT-INVARIANT SUBSPACES OF LORENTZ FUNCTION-SPACES .2.
    CAROTHERS, NL
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1987, 17 (03) : 607 - 616