Symmetric polynomials on rearrangement-invariant function spaces

被引:68
作者
González, M
Gonzalo, R
Jaramillo, JA
机构
[1] Univ Cantabria, Fac Ciencias, Santander 39071, Spain
[2] Univ Complutense, Fac Matemat, Dept Anal Matemat, E-28040 Madrid, Spain
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 1999年 / 59卷
关键词
D O I
10.1112/S0024610799007164
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The exact representation of symmetric polynomials on Banach spaces with symmetric basis and also on separable rearrangement-invariant function spaces over [0, 1] and [0, infinity) is given. As a consequence of this representation it is obtained that, among these spaces, l(2n), L-2n[0, 1], L-2n[0, infinity) and L-2n[0, infinity) boolean AND L-2n[0, infinity) where n, nl are both integers are the only spaces that admit separating polynomials.
引用
收藏
页码:681 / 697
页数:17
相关论文
共 18 条
[1]  
BENNET C, 1988, PURE APPL MATH, V129
[2]  
BONIC R, 1966, J MATH MECH, V15, P877
[3]   Renormings of Lp(Lq) [J].
Deville, R ;
Gonzalo, R ;
Jaramillo, JA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 126 :155-169
[5]   A CHARACTERIZATION OF C-INFINITY-SMOOTH BANACH-SPACES [J].
DEVILLE, R .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 :13-17
[6]  
DEVILLE R, 1993, PITMAN MONOGRAPHS MA, V64
[7]   SEPARATING POLYNOMIALS ON BANACH-SPACES [J].
FABIAN, M ;
PREISS, D ;
WHITFIELD, JHM ;
ZIZLER, VE .
QUARTERLY JOURNAL OF MATHEMATICS, 1989, 40 (160) :409-422
[8]   POLYNOMIAL REFLEXIVITY IN BANACH SPACES [J].
Farmer, Jeff D. .
ISRAEL JOURNAL OF MATHEMATICS, 1994, 87 (1-3) :257-273
[9]   Multilinear forms, subsymmetric polynomials, and spreading models on banach spaces [J].
Gonzalo, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 202 (02) :379-397
[10]   SMOOTHNESS AND ESTIMATES OF SEQUENCES IN BANACH-SPACES [J].
GONZALO, R ;
JARAMILLO, JA .
ISRAEL JOURNAL OF MATHEMATICS, 1995, 89 (1-3) :321-341