Minimal k-Connected Non-Hamiltonian Graphs

被引:2
作者
Ding, Guoli [1 ]
Marshall, Emily [2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Arcadia Univ, Comp Sci & Math Dept, Glenside, PA 19038 USA
关键词
Hamilton cycles; Graph minors;
D O I
10.1007/s00373-018-1874-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we explore minimal k-connected non-Hamiltonian graphs. Graphs are said to be minimal in the context of some containment relation; we focus on subgraphs, induced subgraphs, minors, and induced minors. When , we discuss all minimal 2-connected non-Hamiltonian graphs for each of these four relations. When , we conjecture a set of minimal non-Hamiltonian graphs for the minor relation and we prove one case of this conjecture. In particular, we prove all 3-connected planar triangulations which do not contain the Herschel graph as a minor are Hamiltonian.
引用
收藏
页码:289 / 312
页数:24
相关论文
共 10 条
[1]  
Brinkmann G, 2015, ARS MATH CONTEMP, V9, P145
[2]   Minimal 2-connected non-hamiltonian claw-free graphs [J].
Brousek, J .
DISCRETE MATHEMATICS, 1998, 191 (1-3) :57-64
[3]   The circumference of a graph with no K3,t-minor, II [J].
Chen, Guantao ;
Yu, Xingxing ;
Zang, Wenan .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (06) :1211-1240
[4]  
Chvatal V., 1972, Discrete Math, V2, P111, DOI DOI 10.1016/0012-365X(72)90079-9
[5]   Hamilton cycles in plane triangulations [J].
Jackson, B ;
Yu, XX .
JOURNAL OF GRAPH THEORY, 2002, 41 (02) :138-150
[6]  
Kotzig A., 1968, Acta Fac. Rerum Natur. Univ. Comenian. Math, V21, P1
[7]  
Mark E., 2016, ARXIV161006558
[8]   GRAPH MINORS .9. DISJOINT CROSSED PATHS [J].
ROBERTSON, N ;
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 49 (01) :40-77
[9]   DECOMPOSITION OF REGULAR MATROIDS [J].
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (03) :305-359
[10]  
Tutte W. T., 1956, Trans. Amer. Math. Soc., V82, P99, DOI DOI 10.1090/S0002-9947-1956-0081471-8