HIGH PRECISION FAST PROJECTIVE SYNCHRONIZATION FOR CHAOTIC SYSTEMS WITH UNKNOWN PARAMETERS

被引:2
作者
Nian, Fuzhong [1 ,2 ]
Wang, Xingyuan [1 ]
Lin, Da [1 ]
Niu, Yujun [1 ]
机构
[1] Dalian Univ Technol, Sch Elect & Informat Engn, Dalian 116024, Peoples R China
[2] Lanzhou Univ Technol, Sch Comp & Commun, Lanzhou 730050, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2013年 / 27卷 / 20期
基金
中国国家自然科学基金;
关键词
Projective synchronization; parameters identification; fast; high precision; ADAPTIVE SYNCHRONIZATION;
D O I
10.1142/S0217979213501129
中图分类号
O59 [应用物理学];
学科分类号
摘要
A high precision fast projective synchronization method for chaotic systems with unknown parameters was proposed by introducing optimal matrix. Numerical simulations indicate that the precision be improved about three orders compared with other common methods under the same condition of software and hardware. Moreover, when average error is less than 10(-3), the synchronization speed is 6500 times than common methods, the iteration needs only 4 times. The unknown parameters also were identified rapidly. The theoretical analysis and proof also were given.
引用
收藏
页数:23
相关论文
共 26 条
[1]   Estimation of unknown parameters and adaptive synchronization of hyperchaotic systems [J].
Austin, Francis ;
Sun, Wen ;
Lu, Xiaoqing .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (12) :4264-4272
[2]   A new hyper-chaotic system and its synchronization [J].
Chen, Cheng-Hsien ;
Sheu, Long-Jye ;
Chen, Hsien-Keng ;
Chen, Juhn-Horng ;
Wang, Hung-Chih ;
Chao, Yi-Chi ;
Lin, Yu-Kai .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) :2088-2096
[3]  
Gohary A., 2009, CHAOS SOLITON FRACT, V42, P2874
[4]   Impulsive control of projective synchronization in chaotic systems [J].
Hu, Manfeng ;
Yang, Yongqing ;
Xu, Zhenyuan .
PHYSICS LETTERS A, 2008, 372 (18) :3228-3233
[5]   Full state hybrid projective synchronization of a general class of chaotic maps [J].
Hu, Manfeng ;
Xu, Zhenyuan ;
Zhang, Rong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (04) :782-789
[6]   Parameters identification and adaptive synchronization of chaotic systems with unknown parameters [J].
Huang, LL ;
Wang, M ;
Feng, RP .
PHYSICS LETTERS A, 2005, 342 (04) :299-304
[7]   Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input [J].
Hung, Meei-Ling ;
Yan, Jun-Juh ;
Liao, Teh-Lu .
CHAOS SOLITONS & FRACTALS, 2008, 35 (01) :181-187
[8]   Projective synchronization of a new hyperchaotic Lorenz system [J].
Jia, Qiang .
PHYSICS LETTERS A, 2007, 370 (01) :40-45
[9]   Adaptive synchronization between different hyperchaotic systems with fully uncertain parameters [J].
Jian Huang .
PHYSICS LETTERS A, 2008, 372 (27-28) :4799-4804
[10]   Blowout bifurcation and stability of marginal synchronization of chaos [J].
Krawiecki, A ;
Matyjaskiewicz, S .
PHYSICAL REVIEW E, 2001, 64 (03) :7