Multicolinearity and ridge regression: results on type I errors, power and heteroscedasticity

被引:12
作者
Wilcox, Rand R. [1 ]
机构
[1] Univ Southern Calif, Dept Psychol, Los Angeles, CA 90007 USA
关键词
Regression; multicolinearity; heteroscedasticity; ROBUST RIDGE; TESTS;
D O I
10.1080/02664763.2018.1526891
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let be the slope parameters in a linear regression model and consider the goal of testing (). A well-known concern is that multicolinearity can inflate the standard error of the least squares estimate of , which in turn can result in relatively low power. The paper examines heteroscedastic methods for dealing with this issue via a ridge regression estimator. A method is found that might substantially increase the probability of identifying a single slope that differs from zero. But due to the bias of the ridge estimator, it cannot reject for more than one value of j. Simulations indicate that the increase in power is a function of the correlations among the dependent variables as well as the nature of the distributions generating the data.
引用
收藏
页码:946 / 957
页数:12
相关论文
共 24 条
[1]   ROBUSTNESS [J].
BRADLEY, JV .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1978, 31 (NOV) :144-152
[2]   Effectiveness of a lifestyle intervention in promoting the well-being of independently living older people: results of the Well Elderly 2 Randomised Controlled Trial [J].
Clark, Florence ;
Jackson, Jeanne ;
Carlson, Mike ;
Chou, Chih-Ping ;
Cherry, Barbara J. ;
Jordan-Marsh, Maryalice ;
Knight, Bob G. ;
Mandel, Deborah ;
Blanchard, Jeanine ;
Granger, Douglas A. ;
Wilcox, Rand R. ;
Lai, Mei Ying ;
White, Brett ;
Hay, Joel ;
Lam, Claudia ;
Marterella, Abbey ;
Azen, Stanley P. .
JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH, 2012, 66 (09) :782-790
[3]  
Efron B, 2016, INST MATH STAT MG, P1, DOI 10.1017/CBO9781316576533
[4]   A STATISTICAL VIEW OF SOME CHEMOMETRICS REGRESSION TOOLS [J].
FRANK, IE ;
FRIEDMAN, JH .
TECHNOMETRICS, 1993, 35 (02) :109-135
[5]   Tests for regression models with heteroskedasticity of unknown form [J].
Godfrey, L. G. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (10) :2715-2733
[6]  
Gökpinar E, 2016, GAZI U J SCI, V29, P769
[7]   Tests of regression coefficients under ridge regression models [J].
Halawa, AM ;
El Bassiouni, MY .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2000, 65 (04) :341-356
[8]  
Hoaglin D.C., 2006, EXPLORING DATA TABLE, P461, DOI [DOI 10.1002/9781118150702.CH11, 10.1002/9781118150702.ch11]
[9]   A SHARPER BONFERRONI PROCEDURE FOR MULTIPLE TESTS OF SIGNIFICANCE [J].
HOCHBERG, Y .
BIOMETRIKA, 1988, 75 (04) :800-802
[10]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&