Affine realizations of sphere algebras

被引:0
作者
Bruce, S [1 ]
Salgado, P [1 ]
机构
[1] UNIV MUNICH, SEKT PHYS, D-8000 MUNICH 2, GERMANY
关键词
D O I
10.1063/1.532012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The group Map(M,G) of smooth mappings from a compact manifold M to a simple Lie group G is an infinite-dimensional Lie group. The simplest case is when M=S-1. The central extension of the corresponding Lie algebra Map(S-1,g) (with g the Lie algebra of G) is an affine Kac-Moody algebra. The representations of Map(S-1,g) and of its central extension have been thoroughly investigated. Less work has been done for higher-dimensional M. We discuss the particular cases when M is the two- and three-spheres S-n, n=2,3. In this work we construct particular realizations of the centrally extended Map(S-n,g) from a given realization of an affine Kac-Moody algebra. (C) 1997 American Institute of Physics.
引用
收藏
页码:2626 / 2630
页数:5
相关论文
共 8 条
[1]  
BARS I, 1985, BERKELEY PUBLICATION, V3, P373
[2]   SOME EXAMPLES OF THE ALGEBRA OF FLOWS [J].
BOSE, SK .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (05) :1042-1046
[3]   ALGEBRAS FOR THE 2-SPHERE AND THE 3-SPHERE GROUPS OF COMPACT SIMPLE LIE-GROUPS [J].
BOSE, SK ;
BRUCE, SA .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (10) :2346-2351
[4]  
BRUCE S, LMUTPW9310
[5]  
CORNWELL JF, 1989, GROUP THEORY PHYSICS, V3
[6]   GENERALIZED KAC-MOODY ALGEBRAS AND THE DIFFEOMORPHISM GROUP OF A CLOSED SURFACE [J].
FRAPPAT, L ;
RAGOUCY, E ;
SORBA, P ;
THUILLIER, F ;
HOGASEN, H .
NUCLEAR PHYSICS B, 1990, 334 (01) :250-264
[7]  
GODDARD P, 1986, INT J MOD PHYS A, V1, P303, DOI [DOI 10.1142/S0217751X86000149, 10.1142/S0217751X86000149]
[8]  
Pressley A., 1986, LOOP GROUPS